-
公开(公告)号:CN112396167B
公开(公告)日:2022-07-15
申请号:CN202011603737.4
申请日:2020-12-30
Applicant: 桂林电子科技大学 , 中国科学院自动化研究所
Abstract: 本发明公开了一种外观相似度与空间位置信息融合的回环检测方法,包括步骤:将装有视觉传感器和定位系统的机器人置于场景中自由探索,同时采集图像与相应的空间坐标信息。通过以卷积神经网络为核心的孪生网络框架训练相似度计算模型。采用训练完成的模型将新采集的场景图像与已有图像进行相似度判别,相似度大于一定阈值时,则认为机器人曾经经过该场景。在判别为机器人经过该场景的情况下,计算两张场景图像对应空间坐标的水平距离差,若距离差小于一定阈值,则判定机器人经过的路径产生闭合环路。本方法从外观相似度与里程计两个方面同时进行约束,从而达到检测机器人移动路径中闭合环路的目的。
-
公开(公告)号:CN111695507A
公开(公告)日:2020-09-22
申请号:CN202010532751.3
申请日:2020-06-12
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于改进VGGNet网络的静态手势识别方法,该方法将VGGNet网络进行改进,使用不同的分支来学习标签信息,同时在网络中引入哈希层将手势图像的特征投影到汉明空间,通过计算汉明距离来提高处理手势的效率。将改进后的VGGNet网络和传统的主成分分析方法相结合来进行手势识别,首先将原始数据集和增强后的数据集作为输入数据对VGGNet网络进行训练,得到手势图像的高维特征,然后通过主成分分析法PCA将高维图像特征进行降维,减小特征向量长度,缩短图像之间的相似性度量的计算时间,从而提高提高手势识别的精度和效率。
-
公开(公告)号:CN111695508B
公开(公告)日:2022-07-19
申请号:CN202010532767.4
申请日:2020-06-12
Applicant: 桂林电子科技大学
IPC: G06V40/10 , G06V40/20 , G06V10/75 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08 , G06F16/583 , G06F16/55
Abstract: 本发明公开了一种基于多尺度的Retinex和改进VGGNet网络的手势图像检索方法,该方法通过多尺度的Retinex方法对手势数据图像进行增强后,对采用深度学习方法对模型进行训练。当手势图像检索模型训练好之后,将最后一个FC层提取到的特征作为图像的特征表示参与手势图像检索任务,并改进的VGGNet的多分支网络结构中引入哈希层,模型的输入为手势图像和类别标签,类别标签作为监督信息学习图像特征,每个分支学习不同的标签信息,经过全连接层将之前两个分支学习到的特征进行融合,得到非线性组合特征,然后经过哈希层将得到低维度的哈希特征,再经过哈希层得到二进制哈希吗,最后将二进制哈希码作为特征向量来进行手势检索。在保证准确率的前提下,提高手势检索的效率。
-
公开(公告)号:CN112561824B
公开(公告)日:2023-04-07
申请号:CN202011519696.0
申请日:2020-12-21
Applicant: 中国科学院自动化研究所 , 桂林电子科技大学
Abstract: 本发明涉及一种2D激光与深度图像融合的数据对齐修复方法及系统,所述数据对齐修复方法包括:提取在相同时刻对相同目标采集的2D激光数据和深度图像数据;确定在2D激光数据与深度图像数据中相似度值最高的序列数据;根据相似度值最高的序列数据,确定所述序列数据中的空洞区域和/或毛刺区域,并基于所述序列数据修复空洞区域和/或毛刺区域。本发明基于时间戳提取相同时刻2D激光数据和深度图像数据,筛选出相似度值最高的序列数据,利用序列数据的相关性将有效序列的变化趋势移植到另一模态的无效数据区间,得到新的修复序列,修复的序列能够增强2D激光地图和深度图像的可视化效果,使两种传感器数据得以互相弥补。
-
公开(公告)号:CN112561824A
公开(公告)日:2021-03-26
申请号:CN202011519696.0
申请日:2020-12-21
Applicant: 中国科学院自动化研究所 , 桂林电子科技大学
Abstract: 本发明涉及一种2D激光与深度图像融合的数据对齐修复方法及系统,所述数据对齐修复方法包括:提取在相同时刻对相同目标采集的2D激光数据和深度图像数据;确定在2D激光数据与深度图像数据中相似度值最高的序列数据;根据相似度值最高的序列数据,确定所述序列数据中的空洞区域和/或毛刺区域,并基于所述序列数据修复空洞区域和/或毛刺区域。本发明基于时间戳提取相同时刻2D激光数据和深度图像数据,筛选出相似度值最高的序列数据,利用序列数据的相关性将有效序列的变化趋势移植到另一模态的无效数据区间,得到新的修复序列,修复的序列能够增强2D激光地图和深度图像的可视化效果,使两种传感器数据得以互相弥补。
-
公开(公告)号:CN111695507B
公开(公告)日:2022-08-16
申请号:CN202010532751.3
申请日:2020-06-12
Applicant: 桂林电子科技大学
IPC: G06V40/20 , G06V40/10 , G06V10/77 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08 , G06F16/51 , G06F16/55 , G06F16/583
Abstract: 本发明公开了一种基于改进VGGNet网络的静态手势识别方法,该方法将VGGNet网络进行改进,使用不同的分支来学习标签信息,同时在网络中引入哈希层将手势图像的特征投影到汉明空间,通过计算汉明距离来提高处理手势的效率。将改进后的VGGNet网络和传统的主成分分析方法相结合来进行手势识别,首先将原始数据集和增强后的数据集作为输入数据对VGGNet网络进行训练,得到手势图像的高维特征,然后通过主成分分析法PCA将高维图像特征进行降维,减小特征向量长度,缩短图像之间的相似性度量的计算时间,从而提高提高手势识别的精度和效率。
-
公开(公告)号:CN112396167A
公开(公告)日:2021-02-23
申请号:CN202011603737.4
申请日:2020-12-30
Applicant: 桂林电子科技大学 , 中国科学院自动化研究所
Abstract: 本发明公开了一种外观相似度与空间位置信息融合的回环检测方法,包括步骤:将装有视觉传感器和定位系统的机器人置于场景中自由探索,同时采集图像与相应的空间坐标信息。通过以卷积神经网络为核心的孪生网络框架训练相似度计算模型。采用训练完成的模型将新采集的场景图像与已有图像进行相似度判别,相似度大于一定阈值时,则认为机器人曾经经过该场景。在判别为机器人经过该场景的情况下,计算两张场景图像对应空间坐标的水平距离差,若距离差小于一定阈值,则判定机器人经过的路径产生闭合环路。本方法从外观相似度与里程计两个方面同时进行约束,从而达到检测机器人移动路径中闭合环路的目的。
-
公开(公告)号:CN111695508A
公开(公告)日:2020-09-22
申请号:CN202010532767.4
申请日:2020-06-12
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于多尺度的Retinex和改进VGGNet网络的手势图像检索方法,该方法通过多尺度的Retinex方法对手势数据图像进行增强后,对采用深度学习方法对模型进行训练。当手势图像检索模型训练好之后,将最后一个FC层提取到的特征作为图像的特征表示参与手势图像检索任务,并改进的VGGNet的多分支网络结构中引入哈希层,模型的输入为手势图像和类别标签,类别标签作为监督信息学习图像特征,每个分支学习不同的标签信息,经过全连接层将之前两个分支学习到的特征进行融合,得到非线性组合特征,然后经过哈希层将得到低维度的哈希特征,再经过哈希层得到二进制哈希吗,最后将二进制哈希码作为特征向量来进行手势检索。在保证准确率的前提下,提高手势检索的效率。
-
-
-
-
-
-
-