一种结合自适应非局部样本和低秩的图像去噪方法

    公开(公告)号:CN107292855B

    公开(公告)日:2020-08-07

    申请号:CN201710651882.1

    申请日:2017-08-02

    Abstract: 本发明公开一种结合自适应非局部样本和低秩的图像去噪方法,首先用对数变换将图像转换到对数域,将乘性噪声模型转换成加性噪声模型;将图像分块并且按照相似度分组,得到具有相似块的图像组;然后对图像组做低秩逼近处理,得到初始的估计值;再对初始的估计值用自适应非局部样本模型处理,得到对数域恢复结果;最后用指数变换将对数域图像还原到实数域并且进行修正,得到最终去噪图像。实验结果表明,本发明对乘性噪声有较好的鲁棒性,针对含有乘性噪声的图像不仅能得到很好的峰值信噪比和结构相似度,还较好地改善图像的视觉质量。

    基于非局部自适应字典的乘性噪声去除方法

    公开(公告)号:CN106204483B

    公开(公告)日:2019-09-10

    申请号:CN201610538479.3

    申请日:2016-07-08

    Abstract: 本发明公开了一种基于非局部自适应字典的乘性噪声去除方法,首先利用对数变换将乘性噪声转换为加性噪声,再结合PCA稀疏字典和迭代收缩算法更新稀疏编码,用牛顿迭代法得到对数域中的去噪图像,最后通过指数函数以及误差校正得到实数域中的去噪图像。本发明能够在有效去除噪声的同时能较好的保留图像的边缘、细节和纹理信息。

    一种基于组的非局部稀疏表示加性噪声去除方法

    公开(公告)号:CN106169180A

    公开(公告)日:2016-11-30

    申请号:CN201610548312.5

    申请日:2016-07-13

    CPC classification number: G06T5/002 G06T2207/20081

    Abstract: 本发明公开了一种基于组的非局部稀疏表示加性噪声去除方法,具体步骤包括:S1:在标准图像库中获得自然图像,并对图像进行图像分块并用高斯混合模型训练字典;S2:对每个图像进行加噪声处理,利用基于组的稀疏表示和非局部稀疏表示的方法得到去除噪声模型;S3:将含噪图像分成有重叠的小块,为每个图像块进行非局部相似匹配,找到其具有相同结构类型的相似图像块,把相似度最高的一些块放到一个组中;S4:对于分好的每个组,先对每个组进行奇异值分解,然后对特征值进行阈值处理,得到每个组的估计值;S5:利用预先训练的字典求出估计组在字典中的稀疏编码;S6:利用软阈值方法求解模型;S7:得到去噪图像。

    一种结合自适应非局部样本和低秩的图像去噪方法

    公开(公告)号:CN107292855A

    公开(公告)日:2017-10-24

    申请号:CN201710651882.1

    申请日:2017-08-02

    Abstract: 本发明公开一种结合自适应非局部样本和低秩的图像去噪方法,首先用对数变换将图像转换到对数域,将乘性噪声模型转换成加性噪声模型;将图像分块并且按照相似度分组,得到具有相似块的图像组;然后对图像组做低秩逼近处理,得到初始的估计值;再对初始的估计值用自适应非局部样本模型处理,得到对数域恢复结果;最后用指数变换将对数域图像还原到实数域并且进行修正,得到最终去噪图像。实验结果表明,本发明对乘性噪声有较好的鲁棒性,针对含有乘性噪声的图像不仅能得到很好的峰值信噪比和结构相似度,还较好地改善图像的视觉质量。

    基于非局部自适应字典的乘性噪声去除方法

    公开(公告)号:CN106204483A

    公开(公告)日:2016-12-07

    申请号:CN201610538479.3

    申请日:2016-07-08

    Abstract: 本发明公开了一种基于非局部自适应字典的乘性噪声去除方法,首先利用对数变换将乘性噪声转换为加性噪声,再结合PCA稀疏字典和迭代收缩算法更新稀疏编码,用牛顿迭代法得到对数域中的去噪图像,最后通过指数函数以及误差校正得到实数域中的去噪图像。本发明能够在有效去除噪声的同时能较好的保留图像的边缘、细节和纹理信息。

Patent Agency Ranking