基于融合时空图ConvLSTM模型的风机故障预测方法及存储介质

    公开(公告)号:CN114692341B

    公开(公告)日:2024-03-19

    申请号:CN202210430157.2

    申请日:2022-04-22

    Abstract: 本发明公开了一种基于融合时空图ConvLSTM模型的风机故障预测方法及存储介质,所述方法包括以风电机组工况参数、环境参数和状态参数构成的风机数据集,并通过融合时空图ConvLSTM模型处理后输入到风机故障检测模型中,得到预测结果。本发明针对风机实际环境中的运行数据,首先经过数据预处理和特征工程,然后从风机运行数据的时间和空间两个维度出发,将原始的一维数据转化为二维时空图数据,增强数据对空间关系的表征能力。在所构建的时空图模型基础之上,搭建可适应于二维时空图数据的ConvLSTM模型架构,将二维时空图构建模型与ConvLSTM预测模型深度融合,经过模型的优化训练,有效提升风机在未来一段时间内运行数据的预测准确率,进而提高风机故障预测的准确率。

    基于融合时空图ConvLSTM模型的风机故障预测方法及存储介质

    公开(公告)号:CN114692341A

    公开(公告)日:2022-07-01

    申请号:CN202210430157.2

    申请日:2022-04-22

    Abstract: 本发明公开了一种基于融合时空图ConvLSTM模型的风机故障预测方法及存储介质,所述方法包括以风电机组工况参数、环境参数和状态参数构成的风机数据集,并通过融合时空图ConvLSTM模型处理后输入到风机故障检测模型中,得到预测结果。本发明针对风机实际环境中的运行数据,首先经过数据预处理和特征工程,然后从风机运行数据的时间和空间两个维度出发,将原始的一维数据转化为二维时空图数据,增强数据对空间关系的表征能力。在所构建的时空图模型基础之上,搭建可适应于二维时空图数据的ConvLSTM模型架构,将二维时空图构建模型与ConvLSTM预测模型深度融合,经过模型的优化训练,有效提升风机在未来一段时间内运行数据的预测准确率,进而提高风机故障预测的准确率。

Patent Agency Ranking