一种普适性近红外光谱模型的传递方法

    公开(公告)号:CN113959974B

    公开(公告)日:2024-06-07

    申请号:CN202111138492.7

    申请日:2021-09-27

    Abstract: 一种普适性近红外光谱模型的传递方法,搭建的1D‑MSRCNN,在普通一维卷积神经网络的基础上,加入构以二维图像的inception‑resnet结构为基础,1D‑inception‑resnet网络层;显著提升模型对近红外光谱的特征提取能力,并能够有效避免数据过拟合,达到更好的预测结果。且引入迁移学习方法,将在已有的厂商仪器采集的近红外光谱上建立的卷积网络模型迁移到其他厂商仪器采集的光谱,并在全连接层中加入多核MMD核函数,利用多核MMD核函数度量迁移前和迁移后数据间的差异,通过减少域差异来增强1D‑MSRCNN的具体任务层的特征迁移性。解决采集近红外光谱的仪器存在台间差异,在一台仪器上建立的模型,无法在另外的厂商仪器中应用问题,实现模型跨不同厂商的不同型号仪器的应用。

    一种基于联邦学习和迁移学习的医学图像分类方法

    公开(公告)号:CN116543226A

    公开(公告)日:2023-08-04

    申请号:CN202310569953.9

    申请日:2023-05-19

    Abstract: 本发明公开了一种基于联邦学习和迁移学习的医学图像分类方法,在联邦学习中,由于数据异构性,中央服务器分发的全局模型直接替换本地模型会消除本地模型学习到的知识,并在下一轮迭代中降低其优化效果。本发明拟在本地训练阶段引入增强迁移学习的方法,其在本地模型中更新的步骤主要如下:首先,本方法将本地模型视为源域,全局模型视为目标域,目的是为了让全局模型学习到本地模型的局部知识,避免引起全局模型的性能倒退问题;其次,本方法会让全局模型和本地模型进行相互学习,交换全局知识和本地知识;最后,本方法将全局模型视为源域,本地模型视为目标域,使得全局知识能够最大程度地转移到本地模型中。

    一种普适性近红外光谱模型的传递方法

    公开(公告)号:CN113959974A

    公开(公告)日:2022-01-21

    申请号:CN202111138492.7

    申请日:2021-09-27

    Abstract: 一种普适性近红外光谱模型的传递方法,搭建的1D‑MSRCNN,在普通一维卷积神经网络的基础上,加入构以二维图像的inception‑resnet结构为基础,1D‑inception‑resnet网络层;显著提升模型对近红外光谱的特征提取能力,并能够有效避免数据过拟合,达到更好的预测结果。且引入迁移学习方法,将在已有的厂商仪器采集的近红外光谱上建立的卷积网络模型迁移到其他厂商仪器采集的光谱,并在全连接层中加入多核MMD核函数,利用多核MMD核函数度量迁移前和迁移后数据间的差异,通过减少域差异来增强1D‑MSRCNN的具体任务层的特征迁移性。解决采集近红外光谱的仪器存在台间差异,在一台仪器上建立的模型,无法在另外的厂商仪器中应用问题,实现模型跨不同厂商的不同型号仪器的应用。

    一种轻量化卫生用品缺陷检测的方法及装置

    公开(公告)号:CN116403042A

    公开(公告)日:2023-07-07

    申请号:CN202310368796.5

    申请日:2023-04-07

    Abstract: 本发明涉及轻量化卫生用品缺陷检测的方法,其方法包括:获取卫生用品的表面图像并输入到基于深度学习的轻量级的目标检测神经网络模型中,以对表面图像进行数据增强处理,进而获得初始的特征图,通过嵌有EVC模块的CSP模块对初始的特征图进行多尺度特征提取,通过FPV模块的特征金字塔法将不同尺度的特征图进行融合,通过PANet模块的路径聚合法将不同分辨率的特征图进行融合,通过CSConv模块的轻量级卷积操作对CSP模块、FPV模块和PANet模块的输出特征进行融合,以获得并输出最终的检测结果。本发明通过将GSConv和EVC模块融入到深度学习的目标检测神经网络模型中,提高目标检测的精度和效率,同时保持轻量化和快速的特性。

    基于数据生成的弱监督卫生用品缺陷检测方法及装置

    公开(公告)号:CN116385790A

    公开(公告)日:2023-07-04

    申请号:CN202310368809.9

    申请日:2023-04-07

    Abstract: 本发明涉及一种基于数据生成的弱监督卫生用品缺陷检测方法及装置,其中方法包括:训练缺陷检测模型;基于训练后的缺陷检测模型,检测新输入的测试图像是否为有缺陷图像;若检测新输入的测试图像为有缺陷图像,基于剪贴增强策略生成伪缺陷图像,所述伪缺陷图像与所述有缺陷图像对应;基于训练后的缺陷检测模型,对所述伪缺陷图像进行缺陷定位,得到缺陷位置信息。本发明通过剪贴增强策略引入不规则性,只利用正常图像进行训练,需要少量标注缺陷图像。在不同类型的表面缺陷检测任务中取得较高的准确性和鲁棒性,且需要少量标注数据和人工干预。

    一种高准确度近红外光谱定量模型建立方法

    公开(公告)号:CN113945537A

    公开(公告)日:2022-01-18

    申请号:CN202111138487.6

    申请日:2021-09-27

    Abstract: 一种高准确度近红外光谱定量模型的建立方法,搭建适用于近红外光谱的一维‑多尺度残差卷积神经网络模型,简称1D‑MSRCNN;所述1D‑MSRCNN包括输入层、隐藏层和输出层,所述隐藏层包括依次串联连接的普通一维卷积网络、1D‑inception‑resnet网络层、全局最大池化层以及全连接层。在普通一维卷积神经网络的基础上,加入1D‑inception‑resnet网络层,该网络层的结构以二维图像的inception‑resnet结构为基础,将inception结构和resnet结构内的所有卷积均替换为一维卷积;利用多个并联的不同大小的卷积核进行一维卷积的特征信息提取,极大增加网络的感受野,能有效提取不同分辨率的光谱信息。且resnet‑1D结构,在加深网络深度的同时避免梯度消失。此外,全局平均池化为减少网络参数,避免过拟合,达到更好的预测结果。

Patent Agency Ranking