一种跨模态图文检索方法

    公开(公告)号:CN110457516A

    公开(公告)日:2019-11-15

    申请号:CN201910741822.8

    申请日:2019-08-12

    Abstract: 本发明公开了一种基于栈式跨模态自编码器的跨模态图文检索方法,其主要目的是提高跨模态图文检索的精确度。首先,对图像和文本数据进行预处理,得到图像特征和文本特征,再通过两层受限玻尔兹曼机,提取单模态表示;其次,通过构建深层次的栈式跨模态自编码器,挖掘模态间的相关性;最终,训练模型并得到模型文件,在验证集上完成跨模态图文检索任务。本发明在实现了图文检索中常用的两种检索任务(以图检文和以文检图)的基础上,还能实现输入一种模态数据返回多种模态数据,在三个跨模态图文检索数据集上提升了模型检索精确度和泛化能力。

    一种基于多尺度堆叠网络的广告点击分类方法

    公开(公告)号:CN110674857A

    公开(公告)日:2020-01-10

    申请号:CN201910867916.X

    申请日:2019-09-15

    Abstract: 本发明公开了一种基于多尺度堆叠网络的广告点击分类方法,该方法通过一种基于不同感受野构造多尺度特征的MSSP结构来自动构造组合特征,通过构造多个不同角度、不同视野的观测器从深度和宽度两个角度双向堆叠多尺度特征,挖掘了不同局部视野中的高阶和低阶特征,保证了提取特征的多样性;另外,该结构通过因子化来学习参数,保证了高阶特征在稀疏数据中能被有效学习。本发明弥补了LR、Wide&Deep过于依赖手工构造组合特征的缺点;同时相对于传统的Poly2和FM模型,能够从多个角度挖掘不同尺度的特征来保证模型学习到的信息的多样性;相对于FFM等模型时间复杂度过高的特点,本发明时间复杂度能保持在线性级别,能够满足在线广告对时间响应方面的高要求。

    基于神经网络的Kubernetes调度优化方法

    公开(公告)号:CN108874542A

    公开(公告)日:2018-11-23

    申请号:CN201810578161.7

    申请日:2018-06-07

    Abstract: 本发明公开了一种基于神经网络的Kubernetes调度优化方法,所述方法包括预测模型的构建以及资源调配算法,通过循环神经网络对Kubernetes中Node节点的内存消耗量进行预测,预测出内存消耗量在未来一段时间的变化,并将内存消耗数据输入到资源调配算法当中计算出需要增加的实例个数,Kubernetes系统根据所得实例个数进行动态扩展,从而完成Kubernetes基于内存资源的动态伸缩功能。本发明可以解决Kubernetes的容器应用中内存资源消耗过高导致系统稳定性降低的问题。

Patent Agency Ranking