-
公开(公告)号:CN112036432B
公开(公告)日:2022-12-06
申请号:CN202010635852.3
申请日:2020-07-03
Applicant: 桂林理工大学
IPC: G06F30/20
Abstract: 本发明公开了一种基于禁忌优化的光谱建模样本集快速划分方法。该方法利用基于化学参考值加权的光谱数据2‑均值聚类模式获取定标样本和验证样本的初始划分,探索禁忌搜索方法的参数优化模式,对初始划分进行自适应快速优化,以定标集和验证集的部分样本互换的方式生成多个候选划分对象,将候选对象进行禁忌存储并逐个优化对比,并经过多次迭代以确定当前解的最优化结果。互换样本的数量、候选解的数量、禁忌表的长度和迭代次数等若干参数可调,实现针对样本集划分的智能化更新,最终输出迭代优化的样本集划分结果。针对优化划分结果进一步执行光谱预处理、特征提取、建模优化、模型预测和评价等计量分析操作,有利于提高光谱模型的预测能力。
-
公开(公告)号:CN112036432A
公开(公告)日:2020-12-04
申请号:CN202010635852.3
申请日:2020-07-03
Applicant: 桂林理工大学
IPC: G06K9/62 , G06F30/20 , G01N21/35 , G01N21/359
Abstract: 本发明公开了一种基于禁忌优化的光谱建模样本集快速划分方法。该方法利用基于化学参考值加权的光谱数据2-均值聚类模式获取定标样本和验证样本的初始划分,探索禁忌搜索方法的参数优化模式,对初始划分进行自适应快速优化,以定标集和验证集的部分样本互换的方式生成多个候选划分对象,将候选对象进行禁忌存储并逐个优化对比,并经过多次迭代以确定当前解的最优化结果。互换样本的数量、候选解的数量、禁忌表的长度和迭代次数等若干参数可调,实现针对样本集划分的智能化更新,最终输出迭代优化的样本集划分结果。针对优化划分结果进一步执行光谱预处理、特征提取、建模优化、模型预测和评价等计量分析操作,有利于提高光谱模型的预测能力。
-