-
公开(公告)号:CN117975309A
公开(公告)日:2024-05-03
申请号:CN202410228082.9
申请日:2024-02-29
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V20/17 , G06V20/13 , G06V10/80 , G06V10/764
Abstract: 本发明公开了一种基于特征动态偏移的图像语义信息挖掘方法。首先获取网络训练需要的图像数据集;然后构建基于权重自适应的对角线特征偏移融合策略的交叉视角地理定位网络模型;网络模型包含无人机视角分支和卫星图视角分支,两个分支采用共享权重的学习方式;每个分支都由三个部分组成:特征提取部分、特征划分部分和分类监督部分;经过训练的神经网络模型接收需要定位的无人机视角图像,为其匹配对应的卫星图像。本发明采用权重自适应的对角线特征偏移融合策略,能够根据图像中的目标区域自适应选择划分坐标更合理的环形分区策略,从而提高了特征区域的覆盖率和表达能力,避免了因目标区域不在视觉中心位置而导致的特征提取不足问题。
-
公开(公告)号:CN116797785A
公开(公告)日:2023-09-22
申请号:CN202310327951.9
申请日:2023-03-30
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/26 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于特征提炼的伪装物体检测方法,首先获取伪装物体检测数据集,进行数据预处理;构建基于特征提炼的伪装物体检测模型;再通过训练集对构建好的基于特征提炼的伪装物体检测模型训练,对预测结果使用结构损失函数进行监督学习。最后对模型训练结果加以验证。本发明基于特征提炼的方式来构建伪装物体检测模型,对伪装物体图像的特征进行增强处理以及去除背景噪声,利用结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对伪装物体的精确分割,对社会具有重要意义。
-