一种基于循环学习的人脸匿名方法

    公开(公告)号:CN115021933A

    公开(公告)日:2022-09-06

    申请号:CN202210605831.6

    申请日:2022-05-30

    Abstract: 本发明提出了一种基于循环学习的人脸匿名方法。本发明提出了一个基于循环学习的面部生物特征可逆匿名化方案来保护公共网络空间中传输的面部特征,它由去识别系统(De‑ID系统)和重新识别系统(Re‑ID系统)组成。De‑ID系统对敏感的面部特征进行去识别,使其以与现实世界完全不同的形式存在于公共网络空间中,从而有效地防止因真实的脸部特征的暴露而产生的威胁。基于循环学习的可逆性,Re‑ID系统几乎无损地恢复了去识别的面部特征,确保了人脸图像的认证效用。此外,该模型还提供了全局和局部匿名化策略,以应对不同用户的需求。实验结果显示,与其他现有技术比较,本发明提出的方案不仅能够在公开网络中有效匿名脸部特征,而且不影响脸部图像的实际使用。

    一种基于循环学习的人脸匿名方法

    公开(公告)号:CN115021933B

    公开(公告)日:2023-10-27

    申请号:CN202210605831.6

    申请日:2022-05-30

    Abstract: 本发明提出了一种基于循环学习的人脸匿名方法。本发明提出了一个基于循环学习的面部生物特征可逆匿名化方案来保护公共网络空间中传输的面部特征,它由去识别系统(De‑ID系统)和重新识别系统(Re‑ID系统)组成。De‑ID系统对敏感的面部特征进行去识别,使其以与现实世界完全不同的形式存在于公共网络空间中,从而有效地防止因真实的脸部特征的暴露而产生的威胁。基于循环学习的可逆性,Re‑ID系统几乎无损地恢复了去识别的面部特征,确保了人脸图像的认证效用。此外,该模型还提供了全局和局部匿名化策略,以应对不同用户的需求。实验结果显示,与其他现有技术比较,本发明提出的方案不仅能够在公开网络中有效匿名脸部特征,而且不影响脸部图像的实际使用。

Patent Agency Ranking