面向反应堆堆芯组件数值模拟的有限元撕裂对接法及系统

    公开(公告)号:CN112733401B

    公开(公告)日:2024-03-12

    申请号:CN202011607981.8

    申请日:2020-12-30

    Abstract: 本发明公开一种面向反应堆堆芯组件数值模拟的有限元撕裂对接法及系统。n个计算节点中每个计算节点均设有上述有限元撕裂对接系统,每个计算节点拥有g块类GPU加速器。本发明采用了负载均衡策略,使得各进程的稠密矩阵内存大小趋于平均值,充分利用集群资源,加快求解速度。采用HIP编程,使得有限元撕裂对接法运行在NvidiaCUDA平台和AMDROMc平台。在迭代求解过程的稠密矩阵向量乘阶段中,采用动态分配矩阵策略,使得不同处理器分配到合适的计算量,以充分利用计算资源,加快求解速度。在向量内积阶段,采用了向量内积加速策略和通信计算重叠策略,通过引入通信线程,减少通信等待时间,加快向量内积速度。

    面向反应堆堆芯组件数值模拟的有限元撕裂对接法及系统

    公开(公告)号:CN112733401A

    公开(公告)日:2021-04-30

    申请号:CN202011607981.8

    申请日:2020-12-30

    Abstract: 本发明公开一种面向反应堆堆芯组件数值模拟的有限元撕裂对接法及系统。n个计算节点中每个计算节点均设有上述有限元撕裂对接系统,每个计算节点拥有g块类GPU加速器。本发明采用了负载均衡策略,使得各进程的稠密矩阵内存大小趋于平均值,充分利用集群资源,加快求解速度。采用HIP编程,使得有限元撕裂对接法运行在NvidiaCUDA平台和AMDROMc平台。在迭代求解过程的稠密矩阵向量乘阶段中,采用动态分配矩阵策略,使得不同处理器分配到合适的计算量,以充分利用计算资源,加快求解速度。在向量内积阶段,采用了向量内积加速策略和通信计算重叠策略,通过引入通信线程,减少通信等待时间,加快向量内积速度。

    一种降低大规模分布式机器学习系统能耗的方法

    公开(公告)号:CN109271015B

    公开(公告)日:2020-07-24

    申请号:CN201811177821.7

    申请日:2018-10-10

    Abstract: 本发明公开了一种降低大规模分布式机器学习系统能耗的方法。本发明通过分类器对分布式机器学习系统的负载进行分类识别、状态预测,并通过减少分布式参数服务器间的通信加速任务运行来降低整个分布式机器学习系统的能耗。本发明的方法包含两部分:机器学习负载预测与类型识别方法、分布式机器学习节点间参数“懒同步”机制。本发明通过只将显著更新传递到远程数据中心来减少广域网通信的参数同步机制可以有效减少系统等待时长,加快机器学习收敛速率。对机器学习负载的预测和类型的判别有助于提高工作机的利用率,避免大量工作机开启后处于闲置状态。以上方法缩短了机器学习任务的执行时间,提高了工作机利用率,大大降低了系统能耗。

    一种降低大规模分布式机器学习系统能耗的方法

    公开(公告)号:CN109271015A

    公开(公告)日:2019-01-25

    申请号:CN201811177821.7

    申请日:2018-10-10

    Abstract: 本发明公开了一种降低大规模分布式机器学习系统能耗的方法。本发明通过分类器对分布式机器学习系统的负载进行分类识别、状态预测,并通过减少分布式参数服务器间的通信加速任务运行来降低整个分布式机器学习系统的能耗。本发明的方法包含两部分:机器学习负载预测与类型识别方法、分布式机器学习节点间参数“懒同步”机制。本发明通过只将显著更新传递到远程数据中心来减少广域网通信的参数同步机制可以有效减少系统等待时长,加快机器学习收敛速率。对机器学习负载的预测和类型的判别有助于提高工作机的利用率,避免大量工作机开启后处于闲置状态。以上方法缩短了机器学习任务的执行时间,提高了工作机利用率,大大降低了系统能耗。

Patent Agency Ranking