一种基于YOLO V3的旋转目标检测方法

    公开(公告)号:CN110674674A

    公开(公告)日:2020-01-10

    申请号:CN201910707178.2

    申请日:2019-08-01

    Abstract: 本发明公开了一种基于YOLO V3的旋转目标检测方法,本发明先通过对具有任意方向的遥感舰船训练集图像进行信息提取,使用改进的YOLO V3算法对遥感舰船训练集进行训练,最终可以在测试集中完成对具有任意角度的遥感舰船的检测。本发明对原YOLO V3算法的anchor box的产生、IOU的计算、损失函数的计算方法进行重新设计,增加训练集图像中检测目标的角度信息,使得可以在测试集中完成对具有任意角度的目标的检测。

    一种密集子区域切割的遥感图像旋转舰船目标检测方法

    公开(公告)号:CN110674698A

    公开(公告)日:2020-01-10

    申请号:CN201910816272.1

    申请日:2019-08-30

    Abstract: 本发明公开了一种密集子区域切割的遥感图像旋转舰船目标检测方法,在于对训练集目标进行预处理,根据图像标注工具获取的训练集目标信息,将目标切割成密集的子区域,获取到子目标信息,经YOLO V3训练后获取训练权重文件,并根据权重文件预测目标的密集子区域的中心点,宽和高的信息。通过对密集子区域中心点坐标数据的拟合得到函数关系并计算出预测目标的中心点坐标和角度,在结合密集子目标的宽和高的信息计算出预测目标的宽度和高度,完成对密集子区域的信息的后处理,提取到预测目标的中心点、宽、高、角度的信息,完成对具有角度等特殊目标的检测。

    一种基于半监督广域迁移度量学习的小样本目标识别方法

    公开(公告)号:CN109614980A

    公开(公告)日:2019-04-12

    申请号:CN201811203085.8

    申请日:2018-10-16

    Abstract: 本发明公开了一种基于半监督广域迁移度量学习的小样本目标识别方法;本发明在源域与目标域之间,利用大量的无标签样本,构建中间域样本;以中间域为桥梁,将单步长距离迁移分解为多步短距离迁移,控制“负迁移”风险;此外,建立选择机制,在源域与中间域样本集合中,选择部分高“正迁移”概率样本,进一步降低“负迁移”风险。本发明的关键在于充分利用目标的先验信息。本发明由于有机结合了多种机器学习方法,突破现有小样本学习方法的局限,方法简单易于实现,对使用传统方法的工程无需重新构造,详细兼容,能够节省大量人力。并且可以与其它小样本目标识别的方法相结合,对提高目标检测识别精度有重要意义。

    一种密集子区域切割的遥感图像旋转舰船目标检测方法

    公开(公告)号:CN110674698B

    公开(公告)日:2021-12-07

    申请号:CN201910816272.1

    申请日:2019-08-30

    Abstract: 本发明公开了一种密集子区域切割的遥感图像旋转舰船目标检测方法,在于对训练集目标进行预处理,根据图像标注工具获取的训练集目标信息,将目标切割成密集的子区域,获取到子目标信息,经YOLO V3训练后获取训练权重文件,并根据权重文件预测目标的密集子区域的中心点,宽和高的信息。通过对密集子区域中心点坐标数据的拟合得到函数关系并计算出预测目标的中心点坐标和角度,在结合密集子目标的宽和高的信息计算出预测目标的宽度和高度,完成对密集子区域的信息的后处理,提取到预测目标的中心点、宽、高、角度的信息,完成对具有角度等特殊目标的检测。

    基于特征子空间生成对抗网络的小样本目标识别方法

    公开(公告)号:CN110363060B

    公开(公告)日:2021-07-20

    申请号:CN201910271102.X

    申请日:2019-04-04

    Abstract: 本发明公开了一种基于特征子空间生成对抗网络的小样本目标识别方法;本发明先获取用于训练生成对抗网络的特征,接着使用重组后的特征数据训练生成对抗网络,再使用训练后的生成对抗网络生成新的特征对小样本数据进行扩充,最后使用扩充后的数据训练目标识别网络。本发明的关键在于使用生成对抗网络数据驱动的特点和较强的模仿能力,模仿对于不同因素导致退化的水下图像的增强策略。利用属性分支和判别分支这种多分支的结构增强学习的综合性和鲁棒性。

    基于特征子空间生成对抗网络的小样本目标识别方法

    公开(公告)号:CN110363060A

    公开(公告)日:2019-10-22

    申请号:CN201910271102.X

    申请日:2019-04-04

    Abstract: 本发明公开了一种基于特征子空间生成对抗网络的小样本目标识别方法;本发明先获取用于训练生成对抗网络的特征,接着使用重组后的特征数据训练生成对抗网络,再使用训练后的生成对抗网络生成新的特征对小样本数据进行扩充,最后使用扩充后的数据训练目标识别网络。本发明的关键在于使用生成对抗网络数据驱动的特点和较强的模仿能力,模仿对于不同因素导致退化的水下图像的增强策略。利用属性分支和判别分支这种多分支的结构增强学习的综合性和鲁棒性。

Patent Agency Ranking