一种光场显著性检测数据集清晰度评价方法

    公开(公告)号:CN113935404A

    公开(公告)日:2022-01-14

    申请号:CN202111120902.5

    申请日:2021-09-24

    Abstract: 本发明公开了一种光场显著性检测数据集清晰度评价方法。首先通过显著性区域掩膜制作三个掩膜,并获取对应的窗函数;通过掩膜A获得光场焦堆栈图像显著性区域图像;用傅里叶变换将焦堆栈显著性区域图像从空域转换到频域,获得其频谱信息;对显著性区域高频信息进行傅里叶反变换,得到空域图像;用腐蚀的掩膜B截取空域高频部分,计算高频图像灰度值之和,用以表示焦堆栈图像显著性区域高频能量值大小;对堆栈图像显著性区域高频能量值进行归一化,用来表示该图片的训练权重。本发明针对数据集焦堆栈中显著性区域进行清晰程度判定,并以此作为焦堆栈中该图片训练权重的评价标准,显著性区域越清晰,则该图片的训练权重越高。

    基于SSD的声呐目标检测方法

    公开(公告)号:CN109655815A

    公开(公告)日:2019-04-19

    申请号:CN201811407252.0

    申请日:2018-11-23

    Abstract: 本发明公开了基于SSD的声呐目标检测方法。当下的水下目标检测识别方法难以精准的同步识别多个目标。本发明如下:一、建立SSD神经网络模型。二、用需要被识别的声呐数据生成n张被测声呐图像。三、将被测声呐图像送入SSD神经网络模型,获取特征图。四、对特征图设置检测框。五、将检测框输入两个卷积核,获取检测框针对各个目标类别的类别分数以及形状偏移量。六、确定被测声呐图像含有的目标类型,并框选出所有目标。本发明将深度学习技术融入到声呐目标检测中,将声呐数据生成的声呐图像输入SSD神经网络模型中,在模型中一次性完成特征提取、目标检测、目标分类,从而大大提高检测速度。

    基于SSD的声呐目标检测方法

    公开(公告)号:CN109655815B

    公开(公告)日:2020-07-07

    申请号:CN201811407252.0

    申请日:2018-11-23

    Abstract: 本发明公开了基于SSD的声呐目标检测方法。当下的水下目标检测识别方法难以精准的同步识别多个目标。本发明如下:一、建立SSD神经网络模型。二、用需要被识别的声呐数据生成n张被测声呐图像。三、将被测声呐图像送入SSD神经网络模型,获取特征图。四、对特征图设置检测框。五、将检测框输入两个卷积核,获取检测框针对各个目标类别的类别分数以及形状偏移量。六、确定被测声呐图像含有的目标类型,并框选出所有目标。本发明将深度学习技术融入到声呐目标检测中,将声呐数据生成的声呐图像输入SSD神经网络模型中,在模型中一次性完成特征提取、目标检测、目标分类,从而大大提高检测速度。

    一种光场显著性检测数据集清晰度评价方法

    公开(公告)号:CN113935404B

    公开(公告)日:2025-02-11

    申请号:CN202111120902.5

    申请日:2021-09-24

    Abstract: 本发明公开了一种光场显著性检测数据集清晰度评价方法。首先通过显著性区域掩膜制作三个掩膜,并获取对应的窗函数;通过掩膜A获得光场焦堆栈图像显著性区域图像;用傅里叶变换将焦堆栈显著性区域图像从空域转换到频域,获得其频谱信息;对显著性区域高频信息进行傅里叶反变换,得到空域图像;用腐蚀的掩膜B截取空域高频部分,计算高频图像灰度值之和,用以表示焦堆栈图像显著性区域高频能量值大小;对堆栈图像显著性区域高频能量值进行归一化,用来表示该图片的训练权重。本发明针对数据集焦堆栈中显著性区域进行清晰程度判定,并以此作为焦堆栈中该图片训练权重的评价标准,显著性区域越清晰,则该图片的训练权重越高。

    基于Faster R-CNN的声呐目标检测方法

    公开(公告)号:CN108596030A

    公开(公告)日:2018-09-28

    申请号:CN201810229078.9

    申请日:2018-03-20

    Abstract: 本发明公开基于Faster R-CNN的声呐目标检测方法。本发明采用深度学习技术对不同复杂水下环境中的目标进行特征提取。是对现今声呐目标检测方法方面一次重大创新与尝试,打破了传统方法所带来的局限,能够提取到低信噪比下声呐图像的深层次特征,并能对线状目标进行很好的目标检测与识别。本发明创建基于区域加速卷积神经网络(Faster-RCNN)声呐目标检测与识别网络对声呐数据进行目标检测。通过实验发现,该方法在声呐图像的线状目标检测上取得很好的表现,验证了深度学习方法在声呐目标检测的可行性,为复杂水声环境数据的特征提取提供新的研究手段。

    一种SSVEP视觉刺激器的控制电路

    公开(公告)号:CN207022264U

    公开(公告)日:2018-02-16

    申请号:CN201720956330.7

    申请日:2017-08-02

    Abstract: 本实用新型涉及一种SSVEP视觉刺激器的控制电路。本实用新型包括电源模块、主控模块、串口通信模块、开关模块、DAC数模转换模块、测试模块和点阵模块;电源模块给其他模块的供电;主控模块控制串口通信模块与PC端进行串口通信,控制DAC数模转换模块,控制开关模块;开关模块控制点阵模块的闪烁;DAC数模转换模块控制RGB-LED点阵模块;测试模块指示主控模块的工作状态。本实用新型采用硬件方式实现刺激器。利用微处理器的定时器实现延时功能,频率更精确;采用4x4点阵,便携、刺激效果好,光源颜色可任意调节,选择更灵活,简化实验过程;操作过程简便,采用串口通信方式,通过上位机软件即可实现对光源的控制以及调节。

Patent Agency Ranking