-
公开(公告)号:CN115496115B
公开(公告)日:2023-05-19
申请号:CN202211456173.5
申请日:2022-11-21
Applicant: 杭州电子科技大学
IPC: G06F18/241 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/08
Abstract: 本方案公开了一种基于矢量空间分离的持续电磁信号分类方法,包括,使用无线电信号作为训练卷积神经网络的样本数据;进行第一个任务训练得到训练后的卷积神经网络;当新任务到来时,在原有卷积神经网络模型上增加新的全连接层,与旧的全连接层进行拼接输出;新任务训练过程中,基于余弦相似度控制新旧任务在矢量空间的距离,并使用L2正则化平衡新旧任务权重的大小,同时使用交叉熵损失函数区分新类与旧类;新任务训练结束后得到新的卷积神经网络。本方案引入一种相似度损失函数,并在交叉熵损失函数的共同作用下,在矢量空间中,保证新类对旧类的分类和新类之间的区分,来减少新类对旧类的影响并保证新任务的学习。
-
公开(公告)号:CN115883301A
公开(公告)日:2023-03-31
申请号:CN202211412173.5
申请日:2022-11-11
Applicant: 杭州电子科技大学
IPC: H04L27/00 , G06F18/241 , G06F18/213 , G06F18/214 , G06N3/04 , G06N3/094
Abstract: 本方案公开了一种基于样本回想增量学习的信号调制分类模型及学习方法,包括记忆回想模块、辨别模块和分类网络,引入了基于类标签与样本标签的记忆方式,在样本记忆阶段,记忆模块会对样本进行学习并生成低维度的特征表示,在样本回想阶段,只需对回想模块输入类标签与样本标签,就可以精确回想对应的样本,无需保存样本数据,只需要保存训练的回想模块和样本标签信息即可,通过记忆回想模块这个框架来作为样本数据的仓库,克服了直接存储样本数据需占用大量内存的困境。
-
公开(公告)号:CN115496115A
公开(公告)日:2022-12-20
申请号:CN202211456173.5
申请日:2022-11-21
Applicant: 杭州电子科技大学
Abstract: 本方案公开了一种基于矢量空间分离的持续电磁信号分类方法,包括,使用无线电信号作为训练卷积神经网络的样本数据;进行第一个任务训练得到训练后的卷积神经网络;当新任务到来时,在原有卷积神经网络模型上增加新的全连接层,与旧的全连接层进行拼接输出;新任务训练过程中,基于余弦相似度控制新旧任务在矢量空间的距离,并使用L2正则化平衡新旧任务权重的大小,同时使用交叉熵损失函数区分新类与旧类;新任务训练结束后得到新的卷积神经网络。本方案引入一种相似度损失函数,并在交叉熵损失函数的共同作用下,在矢量空间中,保证新类对旧类的分类和新类之间的区分,来减少新类对旧类的影响并保证新任务的学习。
-
-