-
公开(公告)号:CN112633167B
公开(公告)日:2024-04-16
申请号:CN202011536430.7
申请日:2020-12-23
Applicant: 杭州电子科技大学
IPC: G06F18/213 , G06F18/24 , G06F18/2431 , G16H50/70
Abstract: 本发明公开一种基于SaO2信号多种基线特征的自动识别SAHS方法,包括步骤:S1、采集SHHS数据库中的SaO2信号,并对SaO2信号进行预处理;S2、提取多种基本数据特征,并筛选出最优特征;S3、提取多种自定义基线相关特征并与最优特征合并成特征数据集;S4、依据SHHS数据库中提取数据对应的注释文件,计算AHI值,根据AHI值对特征数据集进行分类,选取随机平衡数据法对不平衡数据集进行处理,得到平衡数据集;S5、将平衡数据集作为随机森林分类器的输入,对数据集进行训练和测试,得到最终分类结果。本发明更好地体现SaO2信号变化情况,受试者患病严重程度通过基线相关特征有更好体现;通过随机平衡数据法合并成完整平衡数据集,保证数据随机性,使最终分类结果更准确。
-
公开(公告)号:CN113111797A
公开(公告)日:2021-07-13
申请号:CN202110417595.0
申请日:2021-04-19
Applicant: 杭州电子科技大学
Abstract: 本发明结合自编码器与视角变换模型的跨视角步态识别方法:采集多视角多携带物状态的步态数据集;训练得到去携带物编码器和视角判别器;将待测目标在多个观测视角下的步态能量图输入编码器得到纯步态特征,将步态特征拼接为步态特征矩阵,通过奇异值分解得到角度变换与身份信息向量;通过带有身份标签的步态组输入卷积神经网络中进行识别,得到识别模型;将待识别目标的步态能量图输入自编码器与观测视角判别器,得到无携带物步态能量图与观测视角信息,一同输入视角投影模型并转换至对比视角下,与在对比视角下来自不同目标的步态能量图依次组成步态能量图组,输入识别模型,取得分最高组合为识别结果,完成识别。
-
公开(公告)号:CN112331232A
公开(公告)日:2021-02-05
申请号:CN202011228473.9
申请日:2020-11-06
Applicant: 杭州电子科技大学
IPC: G10L25/63 , G10L21/0208 , G10L21/0232 , G10L25/03 , G10L25/18 , G10L25/30 , G10L25/45
Abstract: 本发明公开了一种结合CGAN谱图去噪和双边滤波谱图增强的语音情感识别方法,包括:S1、获取干净语谱图以及加噪语谱图;S2、将干净语谱图和加噪语谱图输入基于矩阵距离的条件生成对抗网络进行训练,得到去噪模型;S3、利用去噪模型对加噪语谱图进行去噪处理,分别进行两个不同尺度的双边滤波,得到低、高尺度滤波图,低、高尺度滤波图相差再乘以增强系数,然后与低尺度滤波图相加,得到细节增强的语谱图;S4、将细节增强的语谱图输入卷积神经网络模型中进行分类,得到分类模型;S5、待识别语音的语谱图经过步骤S3中对语谱图的处理,得到的细节增强的语谱图输入分类模型,得到语音情感分类结果。本发明有效实现语音情感的识别。
-
公开(公告)号:CN113111797B
公开(公告)日:2024-02-13
申请号:CN202110417595.0
申请日:2021-04-19
Applicant: 杭州电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明结合自编码器与视角变换模型的跨视角步态识别方法:采集多视角多携带物状态的步态数据集;训练得到去携带物编码器和视角判别器;将待测目标在多个观测视角下的步态能量图输入编码器得到纯步态特征,将步态特征拼接为步态特征矩阵,通过奇异值分解得到角度变换与身份信息向量;通过带有身份标签的步态组输入卷积神经网络中进行识别,得到识别模型;将待识别目标的步态能量图输入自编码器与观测视角判别器,得到无携带物步态能量图与观测视角信息,一同输入视角投影模型并转换至对比视角下,与在对比视角下来自不同目标的步态能量图依次组成步态能量图组,输入识别模型,取得分最高组合为识别结果,完成识别。
-
公开(公告)号:CN112331232B
公开(公告)日:2022-08-12
申请号:CN202011228473.9
申请日:2020-11-06
Applicant: 杭州电子科技大学
IPC: G10L25/63 , G10L21/0208 , G10L21/0232 , G10L25/03 , G10L25/18 , G10L25/30 , G10L25/45
Abstract: 本发明公开了一种结合CGAN谱图去噪和双边滤波谱图增强的语音情感识别方法,包括:S1、获取干净语谱图以及加噪语谱图;S2、将干净语谱图和加噪语谱图输入基于矩阵距离的条件生成对抗网络进行训练,得到去噪模型;S3、利用去噪模型对加噪语谱图进行去噪处理,分别进行两个不同尺度的双边滤波,得到低、高尺度滤波图,低、高尺度滤波图相差再乘以增强系数,然后与低尺度滤波图相加,得到细节增强的语谱图;S4、将细节增强的语谱图输入卷积神经网络模型中进行分类,得到分类模型;S5、待识别语音的语谱图经过步骤S3中对语谱图的处理,得到的细节增强的语谱图输入分类模型,得到语音情感分类结果。本发明有效实现语音情感的识别。
-
公开(公告)号:CN112633167A
公开(公告)日:2021-04-09
申请号:CN202011536430.7
申请日:2020-12-23
Applicant: 杭州电子科技大学
Abstract: 本发明公开一种基于SaO2信号多种基线特征的自动识别SAHS方法,包括步骤:S1、采集SHHS数据库中的SaO2信号,并对SaO2信号进行预处理;S2、提取多种基本数据特征,并筛选出最优特征;S3、提取多种自定义基线相关特征并与最优特征合并成特征数据集;S4、依据SHHS数据库中提取数据对应的注释文件,计算AHI值,根据AHI值对特征数据集进行分类,选取随机平衡数据法对不平衡数据集进行处理,得到平衡数据集;S5、将平衡数据集作为随机森林分类器的输入,对数据集进行训练和测试,得到最终分类结果。本发明更好地体现SaO2信号变化情况,受试者患病严重程度通过基线相关特征有更好体现;通过随机平衡数据法合并成完整平衡数据集,保证数据随机性,使最终分类结果更准确。
-
-
-
-
-