-
公开(公告)号:CN112541415A
公开(公告)日:2021-03-23
申请号:CN202011399687.2
申请日:2020-12-02
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于符号传递熵和图论的脑肌功能网络运动疲劳检测方法;首先,通过64导联脑电帽和肌电采集仪采集了10通道脑电信号和尺侧腕屈肌、屈指浅肌、桡侧腕屈肌的表面肌电信号。结合符号传递熵和图论知识建立了脑肌功能网络,并提取了网络特征向量用于K最近邻算法训练分类器,最终用于检测运动疲劳。该方法克服了传统的基于生物电信号的运动疲劳检测方法中未全面考虑脑肌协作进行运动控制的缺点,将脑电信号和肌电信号结合进行运动疲劳检测,结果显示该方法在运动疲劳检测中具有较高的准确率。
-
公开(公告)号:CN112541415B
公开(公告)日:2024-02-02
申请号:CN202011399687.2
申请日:2020-12-02
Applicant: 杭州电子科技大学
IPC: G06F18/10 , G06F18/213 , G06F18/24 , G06F18/214 , G06F18/23
Abstract: 本发明公开了一种基于符号传递熵和图论的脑肌功能网络运动疲劳检测方法;首先,通过64导联脑电帽和肌电采集仪采集了10通道脑电信号和尺侧腕屈肌、屈指浅肌、桡侧腕屈肌的表面肌电信号。结合符号传递熵和图论知识建立了脑肌功能网络,并提取了网络特征向量用于K最近邻算法训练分类器,最终用于检测运动疲劳。该方法克服了传统的基于生物电信号的运动疲劳检测方法中未全面考虑脑肌协作进行运动控制的缺点,将脑电信号和肌电信号结合进行运动疲劳检测,结果显示该方法在运动疲劳检测中具有较高的准确率。
-