-
公开(公告)号:CN114647715B
公开(公告)日:2025-04-18
申请号:CN202210361634.4
申请日:2022-04-07
Applicant: 杭州电子科技大学
IPC: G06F16/334 , G06F16/335 , G06F16/35 , G06F40/30 , G06F18/22 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于预训练语言模型的实体识别方法。本发明涉及深度学习,自然语言处理任务中的预训练语言模型和数据集成领域中的实体识别子任务。本发明添加了对于实体识别任务本身独特需求的关注,具体是提出一个关注相似片段和数字信息片段的联合实体识别模型,通过一个感知相似片段的编码器和一个感知数字片段的编码器,可以有效处理预训练语言模型在小训练集上注意力分散的问题,从而使模型能够更好的处理实体识别任务。本发明能够在小训练集上较现有最新方法有显著的提升,目前大部分方法都需要大量的训练数据,这就意味着需要大量人工参与标注数据,本发明可以有效节省人工标注的成本。
-
公开(公告)号:CN113139580B
公开(公告)日:2024-06-11
申请号:CN202110309301.2
申请日:2021-03-23
Applicant: 杭州电子科技大学
IPC: G06F18/2415 , G06F18/22
Abstract: 本发明公开了一种集成的加权多数软投票的众包数据真值推理方法。本发明包括:步骤1、通过计算实例属于每一个类别的概率,复制K‑1个实例副本,从而转换为新的众包数据集用以训练弱分类器;步骤2、采用基于极大似然估计的方法聚合弱分类器;步骤3、引入工人在不同的实例上的不同的标注能力,采用基于相似度比较的方法计算工人权重;步骤4、采用加权软投票的方法聚合生成推理的标签。本发明不仅引入了实例的特征,还综合考虑了不同工人对于不同实例的标注能力,通过基于相似度比较预测标签和工人标签得到的权重来量化标注能力。提出基于工人权重的加权软投票的方法预测最后的标签。本发明提出的方法具有较强的可实施性。
-
公开(公告)号:CN114647715A
公开(公告)日:2022-06-21
申请号:CN202210361634.4
申请日:2022-04-07
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于预训练语言模型的实体识别方法。本发明涉及深度学习,自然语言处理任务中的预训练语言模型和数据集成领域中的实体识别子任务。本发明添加了对于实体识别任务本身独特需求的关注,具体是提出一个关注相似片段和数字信息片段的联合实体识别模型,通过一个感知相似片段的编码器和一个感知数字片段的编码器,可以有效处理预训练语言模型在小训练集上注意力分散的问题,从而使模型能够更好的处理实体识别任务。本发明能够在小训练集上较现有最新方法有显著的提升,目前大部分方法都需要大量的训练数据,这就意味着需要大量人工参与标注数据,本发明可以有效节省人工标注的成本。
-
公开(公告)号:CN111626117A
公开(公告)日:2020-09-04
申请号:CN202010321347.1
申请日:2020-04-22
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于目标检测的垃圾分拣系统及方法。本发明包括垃圾分类目标检测模型、机械臂、工业相机、服务器以及传送带;所述的垃圾分类目标检测模型由YOLOV3神经网络模型,通过带标注的数据集进行训练,然后再通过交叉验证集不断调试训练后的YOLOV3神经网络模型,用测试集测试调试后的最终模型,达到指标后的模型保即为垃圾分类目标检测模型。所述的带标注的数据集,使用图像采集设备,在垃圾处理站实地采集真实场景的垃圾图片,并对垃圾图片中的垃圾类别进行标注,标记为[x_min,y_min,x_max,y_max]以及该垃圾的类别classes_id。所述的服务器与机械臂、工业相机相连接后分别创建线程;本发明实现垃圾分拣生产线智能化、无人化的目标。
-
公开(公告)号:CN111626117B
公开(公告)日:2023-04-18
申请号:CN202010321347.1
申请日:2020-04-22
Applicant: 杭州电子科技大学
IPC: G06V20/10 , G06V10/764 , G06V10/82 , B25J9/16 , B07C5/00 , B07C5/36 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于目标检测的垃圾分拣系统及方法。本发明包括垃圾分类目标检测模型、机械臂、工业相机、服务器以及传送带;所述的垃圾分类目标检测模型由YOLOV3神经网络模型,通过带标注的数据集进行训练,然后再通过交叉验证集不断调试训练后的YOLOV3神经网络模型,用测试集测试调试后的最终模型,达到指标后的模型保即为垃圾分类目标检测模型。所述的带标注的数据集,使用图像采集设备,在垃圾处理站实地采集真实场景的垃圾图片,并对垃圾图片中的垃圾类别进行标注,标记为[x_min,y_min,x_max,y_max]以及该垃圾的类别classes_id。所述的服务器与机械臂、工业相机相连接后分别创建线程;本发明实现垃圾分拣生产线智能化、无人化的目标。
-
公开(公告)号:CN113139580A
公开(公告)日:2021-07-20
申请号:CN202110309301.2
申请日:2021-03-23
Applicant: 杭州电子科技大学
IPC: G06K9/62
Abstract: 本发明公开了一种集成的加权多数软投票的众包数据真值推理方法。本发明包括:步骤1、通过计算实例属于每一个类别的概率,复制K‑1个实例副本,从而转换为新的众包数据集用以训练弱分类器;步骤2、采用基于极大似然估计的方法聚合弱分类器;步骤3、引入工人在不同的实例上的不同的标注能力,采用基于相似度比较的方法计算工人权重;步骤4、采用加权软投票的方法聚合生成推理的标签。本发明不仅引入了实例的特征,还综合考虑了不同工人对于不同实例的标注能力,通过基于相似度比较预测标签和工人标签得到的权重来量化标注能力。提出基于工人权重的加权软投票的方法预测最后的标签。本发明提出的方法具有较强的可实施性。
-
-
-
-
-