一种降低短时模态冗余信息的情感识别方法及其系统

    公开(公告)号:CN118013461A

    公开(公告)日:2024-05-10

    申请号:CN202410243123.1

    申请日:2024-03-04

    Abstract: 本发明公开一种降低短时模态冗余信息的情感识别方法及其系统。本发明首先获取多模态数据并从中提取富含时序性价值的不同模态的特征。然后,将其中不同模态的特征处理为对应的长短时特征。并从短时特征的角度思考,认为其在与长时特征融合时需考虑冗余信息的干扰问题,并使用脉冲神经元去过滤多余部分。最后,依据短时特征的特性,使其在与长时特征融合时更加贴合,降低短时特征对长时特征本身的干扰。本发明首次将长短时多模态的概念引入情感检测领域,通过短时模态信息辅助上下文长时文本模态的思想,过滤短时模态特征信息,进一步提高识别情感的能力。

    一种基于标签嵌入的多模态多标签情感分析方法及系统

    公开(公告)号:CN118297053A

    公开(公告)日:2024-07-05

    申请号:CN202410485156.7

    申请日:2024-04-22

    Abstract: 本发明公开一种基于标签嵌入的多模态多标签情感分析方法及系统。首先获取文本、音频和视频三种模态特征序列以及标签嵌入,通过对抗式多模态细化模块得到它们的公有特征序列和以及各自的私有特征序列。然后将公有特征序列和私有特征序列以及标签嵌入输入到训练好的情感标签预测模块中,得到待预测对象的情感预测结果。本发明采用Transformer编码器进行单一模态特征提取,并且采用了对抗生成器进一步将模态特征细化,为了更加细粒度地融合多模态特征,还采用了跨模态编码器,还有为了充分探索标签和模态之间联系,引入了标签引导解码器,克服了模态和标签交互不足的问题,并且还能提高多模态多标签情感分析的准确率。

Patent Agency Ranking