-
公开(公告)号:CN114549901A
公开(公告)日:2022-05-27
申请号:CN202210172188.2
申请日:2022-02-24
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种多网络联合辅助生成式知识蒸馏方法,首先进行图像分类数据集预处理;然后根据确定的图像分类数据集选择教师网络模型并训练;再根据确定的图像分类数据集选择困难样本生成器G1和学生网络,组成对抗知识蒸馏框架;建立生成对抗知识蒸馏的目标函数;对组建好的对抗知识蒸馏框架进行迭代训练;最后引入简单样本生成器G2,使用困难样本生成器G1和简单样本生成器G2交替调整学生网络,得最终结果。本发明额外引入了一个简单样本生成器,并且简单样本生成器直接复制训练好的困难样本生成器,并没有增加计算量,而且操作简单。在简单样本生成器帮助学生网络回顾简单样本的情况下,最终在目标任务上取得了更好的效果。
-
公开(公告)号:CN114549901B
公开(公告)日:2024-05-14
申请号:CN202210172188.2
申请日:2022-02-24
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/0464 , G06N3/084 , G06N3/096
Abstract: 本发明公开了一种多网络联合辅助生成式知识蒸馏方法,首先进行图像分类数据集预处理;然后根据确定的图像分类数据集选择教师网络模型并训练;再根据确定的图像分类数据集选择困难样本生成器G1和学生网络,组成对抗知识蒸馏框架;建立生成对抗知识蒸馏的目标函数;对组建好的对抗知识蒸馏框架进行迭代训练;最后引入简单样本生成器G2,使用困难样本生成器G1和简单样本生成器G2交替调整学生网络,得最终结果。本发明额外引入了一个简单样本生成器,并且简单样本生成器直接复制训练好的困难样本生成器,并没有增加计算量,而且操作简单。在简单样本生成器帮助学生网络回顾简单样本的情况下,最终在目标任务上取得了更好的效果。
-