-
公开(公告)号:CN109035149B
公开(公告)日:2021-07-09
申请号:CN201810205661.6
申请日:2018-03-13
Applicant: 杭州电子科技大学
Abstract: 本发明提出一种基于深度学习的车牌图像去运动模糊方法。本发明分为数据集预处理阶段、训练阶段以及测试阶段。在数据集预处理阶段,确定图像中的车牌区域,分割车牌字符并规范化图像尺寸,添加高斯噪声,得到训练集。在训练阶段,采用生成对抗网络学习图像去运动模糊模型,以网络复原结果的均方误差、梯度误差及判别误差三者的线性和作为网络损失交替训练判别器和生成器。在测试阶段,分割车牌字符并依次作为生成器的输入,将去模糊结果按照车牌字符原次序组合得到去模糊车牌图像。本发明所提出的模型有效地约束了车牌图像的边缘,从而提高车牌图像去运动模糊的质量,同时缩短了复原的时间。
-
公开(公告)号:CN109035149A
公开(公告)日:2018-12-18
申请号:CN201810205661.6
申请日:2018-03-13
Applicant: 杭州电子科技大学
CPC classification number: G06K9/2054 , G06K9/342 , G06K9/6256 , G06K2209/15 , G06T5/003 , G06T2207/20081 , G06T2207/20084
Abstract: 本发明提出一种基于深度学习的车牌图像去运动模糊方法。本发明分为数据集预处理阶段、训练阶段以及测试阶段。在数据集预处理阶段,确定图像中的车牌区域,分割车牌字符并规范化图像尺寸,添加高斯噪声,得到训练集。在训练阶段,采用生成对抗网络学习图像去运动模糊模型,以网络复原结果的均方误差、梯度误差及判别误差三者的线性和作为网络损失交替训练判别器和生成器。在测试阶段,分割车牌字符并依次作为生成器的输入,将去模糊结果按照车牌字符原次序组合得到去模糊车牌图像。本发明所提出的模型有效地约束了车牌图像的边缘,从而提高车牌图像去运动模糊的质量,同时缩短了复原的时间。
-