-
公开(公告)号:CN110278189B
公开(公告)日:2021-12-10
申请号:CN201910412297.5
申请日:2019-05-17
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于网络流量特征权重图谱的入侵检测方法,对公开数据集进行预处理,利用预处理得到的数据集获得特征基准图谱,并利用每个样本和特征基准图谱得到样本特征权重图谱,将特征权重图谱导入神经网络进行训练,获得训练好的神经网络,利用训练好的神经网络来对待检测网络流量进行检测。由于在特征权重图谱中强化了重要的分类特征,类图形矩阵中图形轮廓加深后,能有更好的识别效果。相较于以往的方法,本发明提升了识别率。
-
公开(公告)号:CN110278189A
公开(公告)日:2019-09-24
申请号:CN201910412297.5
申请日:2019-05-17
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于网络流量特征权重图谱的入侵检测方法,对公开数据集进行预处理,利用预处理得到的数据集获得特征基准图谱,并利用每个样本和特征基准图谱得到样本特征权重图谱,将特征权重图谱导入神经网络进行训练,获得训练好的神经网络,利用训练好的神经网络来对待检测网络流量进行检测。由于在特征权重图谱中强化了重要的分类特征,类图形矩阵中图形轮廓加深后,能有更好的识别效果。相较于以往的方法,本发明提升了识别率。
-