-
公开(公告)号:CN109903331B
公开(公告)日:2020-12-22
申请号:CN201910016289.9
申请日:2019-01-08
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于RGB‑D相机的卷积神经网络目标检测方法。目前越来越多的目标检测算法都利用了卷积神经网络来对目标物体进行定位。然而大部分的卷积神经网络框架都只是利用彩色相机对目标物体的位置进行预测。然而只利用RGB信息,要使卷积神经网络达到较高的检测精度有很大的难度,需要综合考虑卷积神经网络建模,训练方案等诸多方面因素,较难实现。本发明利用了RGB‑D相机采集的深度图,辅助卷积神经网络对目标物体的位置进行预测。利用深度图像中的距离信息,能对目标物体的尺寸大小预先估计,减轻卷积神经网络的建模难度,提升网络的检测精度。
-
公开(公告)号:CN109903332A
公开(公告)日:2019-06-18
申请号:CN201910016293.5
申请日:2019-01-08
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于深度学习的目标姿态估计方法。实际工业环境中需要利用机械手臂对于目标物体进行抓取,需要首先获得目标物体的空间位置信息和姿态信息。摄像机系统价格便宜,所以利用视觉信息来进行目标物体的姿态估计的方法应用最广泛。利用传统的视觉算法来进行姿态估计难以提取出有效的特征,精度比较有限。本发明方法利用了神经网络的优势,利用神经网络算法将目标物体重要区域提取出来之后对物体表面进行建模的方法来估计物体姿态。本方法适应性强,对于不同种类的物体,只需收集数据集对神经网络进行重新训练,无需重新设计特征提取器。而且本方法确定姿态准确,利用神经网络强大的特征提取能力,能够估计分析大部分场景中的物体。
-
公开(公告)号:CN109903331A
公开(公告)日:2019-06-18
申请号:CN201910016289.9
申请日:2019-01-08
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于RGB-D相机的卷积神经网络目标检测方法。目前越来越多的目标检测算法都利用了卷积神经网络来对目标物体进行定位。然而大部分的卷积神经网络框架都只是利用彩色相机对目标物体的位置进行预测。然而只利用RGB信息,要使卷积神经网络达到较高的检测精度有很大的难度,需要综合考虑卷积神经网络建模,训练方案等诸多方面因素,较难实现。本发明利用了RGB-D相机采集的深度图,辅助卷积神经网络对目标物体的位置进行预测。利用深度图像中的距离信息,能对目标物体的尺寸大小预先估计,减轻卷积神经网络的建模难度,提升网络的检测精度。
-
-