基于WKFDA的肌电信号跌倒检测方法

    公开(公告)号:CN104127181B

    公开(公告)日:2017-04-12

    申请号:CN201410350607.2

    申请日:2014-07-22

    Abstract: 本发明涉及一种基于WKFDA的肌电信号跌倒检测方法。首先,从人体下肢的相关肌肉组上采集表面肌电信号,运用能量阈值确定表面肌电信号的动作信号段,对动作信号段的表面肌电信号提取模糊熵作为待分类的特征。然后将特征样本点投影到特征空间,在特征空间中进行线性判别。这样就可以隐含的实现了原输入空间的非线性判别。并采用相应的平衡权重来调节样本核矩阵的贡献,可克服不平衡数据对分类性能的影响。由于采用了非线性映射,基于核的Fisher线性判别算法的数据处理能力大大提升了。实验结果表明,该方法获得了较高的跌倒模式平均识别率,识别结果优于其它分类方法。

    基于WKFDA的肌电信号跌倒检测方法

    公开(公告)号:CN104127181A

    公开(公告)日:2014-11-05

    申请号:CN201410350607.2

    申请日:2014-07-22

    Abstract: 本发明涉及一种基于WKFDA的肌电信号跌倒检测方法。首先,从人体下肢的相关肌肉组上采集表面肌电信号,运用能量阈值确定表面肌电信号的动作信号段,对动作信号段的表面肌电信号提取模糊熵作为待分类的特征。然后将特征样本点投影到特征空间,在特征空间中进行线性判别。这样就可以隐含的实现了原输入空间的非线性判别。并采用相应的平衡权重来调节样本核矩阵的贡献,可克服不平衡数据对分类性能的影响。由于采用了非线性映射,基于核的Fisher线性判别算法的数据处理能力大大提升了。实验结果表明,该方法获得了较高的跌倒模式平均识别率,识别结果优于其它分类方法。

Patent Agency Ranking