-
公开(公告)号:CN111832453A
公开(公告)日:2020-10-27
申请号:CN202010620281.6
申请日:2020-06-30
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于双路深度神经网络的无人驾驶场景实时语义分割方法。本发明步骤如下:步骤1、以残差网络ResNet-18为基础网络,分流出空间信息分支和上下文信息分支;步骤2、对上下文信息分支的不同阶段输出使用注意力精炼模块进行优化;步骤3、对空间信息分支和上下文信息分支的输出使用特征融合模块进行多尺度融合,用于网络最终输出;步骤4、在上下文信息分支中添加两个辅助损失函数,与主损失函数共同监督训练。本发明提高了语义分割对速度和精度的兼得性,从而实现一个应用于无人驾驶的高精度实时语义分割网络。
-
公开(公告)号:CN111832453B
公开(公告)日:2023-10-27
申请号:CN202010620281.6
申请日:2020-06-30
Applicant: 杭州电子科技大学
IPC: G06V20/56 , G06V10/26 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于双路深度神经网络的无人驾驶场景实时语义分割方法。本发明步骤如下:步骤1、以残差网络ResNet‑18为基础网络,分流出空间信息分支和上下文信息分支;步骤2、对上下文信息分支的不同阶段输出使用注意力精炼模块进行优化;步骤3、对空间信息分支和上下文信息分支的输出使用特征融合模块进行多尺度融合,用于网络最终输出;步骤4、在上下文信息分支中添加两个辅助损失函数,与主损失函数共同监督训练。本发明提高了语义分割对速度和精度的兼得性,从而实现一个应用于无人驾驶的高精度实时语义分割网络。
-