一种基于深度学习的边海防目标检测方法

    公开(公告)号:CN108427920B

    公开(公告)日:2021-10-15

    申请号:CN201810159198.6

    申请日:2018-02-26

    Abstract: 本发明公开了一种基于深度学习的边海防目标检测方法,提出了一种改进的基于FRCNN的目标检测网络模型,属于目标检测技术以及计算机视觉领域。该方法针对原有的FRCNN算法检测耗时过长的问题,重新设计了检测网络中的特征提取结构,并利用筛选后的图像分类数据集重新训练,得到一个参数量更少、计算量更小的图像分类模型。使用可变形卷积替换原有的特有卷积层,提高检测网络对物体形变的适应能力,从而提高网络结构的平均检出率。

    一种基于深度学习的船舶目标跟踪方法

    公开(公告)号:CN109509214A

    公开(公告)日:2019-03-22

    申请号:CN201811198664.8

    申请日:2018-10-15

    Abstract: 本发明公开了一种基于深度学习的船舶目标跟踪方法,属于基于图像的目标跟踪领域。本发明可以在边海防,智能海洋监测系统,船舶态势估计等领域应用。步骤S1:使用自建船舶分类和检测数据集对深度网络进行训练和压缩,得到一个轻量化的船舶检测网络;步骤S2:使用经过训练的轻量化检测网络模型实时检测视频中的船舶目标并进行目标的跟踪。采用本发明的技术方案,将自建的船舶数据集进行训练,得到一个轻量化的检测网络,再结合改进的跟踪算法框架进行船舶目标的跟踪,实现了船舶目标的实时跟踪,整体方案具有设备依赖性低、跟踪稳定性高以及实时性强等特点。

    一种基于深度学习的船舶目标跟踪方法

    公开(公告)号:CN109509214B

    公开(公告)日:2021-07-16

    申请号:CN201811198664.8

    申请日:2018-10-15

    Abstract: 本发明公开了一种基于深度学习的船舶目标跟踪方法,属于基于图像的目标跟踪领域。本发明可以在边海防,智能海洋监测系统,船舶态势估计等领域应用。步骤S1:使用自建船舶分类和检测数据集对深度网络进行训练和压缩,得到一个轻量化的船舶检测网络;步骤S2:使用经过训练的轻量化检测网络模型实时检测视频中的船舶目标并进行目标的跟踪。采用本发明的技术方案,将自建的船舶数据集进行训练,得到一个轻量化的检测网络,再结合改进的跟踪算法框架进行船舶目标的跟踪,实现了船舶目标的实时跟踪,整体方案具有设备依赖性低、跟踪稳定性高以及实时性强等特点。

    一种基于深度学习的边海防目标检测方法

    公开(公告)号:CN108427920A

    公开(公告)日:2018-08-21

    申请号:CN201810159198.6

    申请日:2018-02-26

    Abstract: 本发明公开了一种基于深度学习的边海防目标检测方法,提出了一种改进的基于FRCNN的目标检测网络模型,属于目标检测技术以及计算机视觉领域。该方法针对原有的FRCNN算法检测耗时过长的问题,重新设计了检测网络中的特征提取结构,并利用筛选后的图像分类数据集重新训练,得到一个参数量更少、计算量更小的图像分类模型。使用可变形卷积替换原有的特有卷积层,提高检测网络对物体形变的适应能力,从而提高网络结构的平均检出率。

Patent Agency Ranking