-
公开(公告)号:CN118521876A
公开(公告)日:2024-08-20
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN118521876B
公开(公告)日:2024-10-22
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN105701506B
公开(公告)日:2019-01-18
申请号:CN201610018444.7
申请日:2016-01-12
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于超限学习机与稀疏表示分类的改进方法。本发明步骤如下:1、随机产生隐层节点参数;2、计算出隐层节点输出矩阵,3、根据L和N的大小关系,采用不同的公式计算出连接隐层节点和输出神经元的输出权重4、计算出查询图片y的输出向量;5、对ELM输出向量ο中的极大值οf和次大值οs的差值进行判断,如果差值大于设定值,则求出输出向量中最大值对应的索引即为查询图片所属类别;否则进入步骤6;6、采用输出向量ο中k个最大值所对应的的训练样本,构造子字典,采用系数重构算法计算图片y的线性表示系数,计算残差并根据残差所对应的的类别确定查询图片的所属类。本发明计算量就会大大减少,实现较高的识别率,也能够大大降低计算复杂度。
-
公开(公告)号:CN106249228A
公开(公告)日:2016-12-21
申请号:CN201610530164.4
申请日:2016-06-30
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于基频能量分布特征的周期振源距离智能检测方法。本发明包括如下步骤:步骤1、基频检测得到周期振动信号的基频;步骤2、依据基频从周期振动信号中提取出一种反映基频能量分布的频带能量百分比特征,即FBEP特征;步骤3、依据已知距离的特征库,将提取出的未知距离的FBEP特征通过KNN法进行分析处理,得到振动信号距离的预测值。运用本发明后,单传感器节点可以实现检测距离,多传感器组合则可以实现交叉定位,并同时确保其精度与可靠性。此外,本发明具有无需事先学习距离特征的优点,从而使此距离检测具有更好的适应性。同时基于互相关法改进的基频检测步骤可以达到较好的距离检测效果。
-
公开(公告)号:CN118506168B
公开(公告)日:2024-10-15
申请号:CN202410954584.X
申请日:2024-07-17
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
公开(公告)号:CN111540373A
公开(公告)日:2020-08-14
申请号:CN202010029066.9
申请日:2020-01-12
Applicant: 杭州电子科技大学
IPC: G10L21/0232 , G10L25/24 , G06N3/04
Abstract: 本发明公开了一种基于超复数随机神经网络的城市噪声识别方法。本发明将城市噪声信号经过谱减法滤波器,然后提取其MFCC、LSP和PLP特征,再拼接成四元数增广向量,最后经过四元数极限学习机(Q-ELM)实现对噪声信号的分类识别。本发明充分提取了低信噪比情况下,信号中的有用信息,增广四元数结构也可利用各个特征之间的结构信息,可以有效提高城市噪声信号的识别率。
-
公开(公告)号:CN106297770B
公开(公告)日:2019-11-22
申请号:CN201610634966.X
申请日:2016-08-04
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于时频域统计特征提取的自然环境识别方法。本发明包括如下步骤:步骤1、采集各类自然环境的声音,如发动机、汽车喇叭、风噪声等,建立声音样本库;步骤2、声音样本信号的加窗分帧处理;步骤3、提取所有帧信号在时域上的统计特征;步骤4、标记特征向量所属声音来源的种类,建立样本特征库;步骤5、利用支持向量机训练特征向量,建立训练模型;步骤6,提取目标声音的特征向量;步骤7、利用支持向量机对目标声音的特征向量进行匹配分类;步骤8、提供识别结果。本发明弥补了传统的声音LPCC和MFCC特征提取方法在时频结合方面的不足,能够判断各类目标声音的所属类型。
-
公开(公告)号:CN105701506A
公开(公告)日:2016-06-22
申请号:CN201610018444.7
申请日:2016-01-12
Applicant: 杭州电子科技大学
CPC classification number: G06K9/6267 , G06K9/6259 , G06N3/0445
Abstract: 本发明公开了一种基于超限学习机与稀疏表示分类的改进方法。本发明步骤如下:1、随机产生隐层节点参数;2、计算出隐层节点输出矩阵,3、根据L和N的大小关系,采用不同的公式计算出连接隐层节点和输出神经元的输出权重4、计算出查询图片y的输出向量;5、对ELM输出向量ο中的极大值οf和次大值οs的差值进行判断,如果差值大于设定值,则求出输出向量中最大值对应的索引即为查询图片所属类别;否则进入步骤6;6、采用输出向量ο中k个最大值所对应的训练样本,构造子字典,采用系数重构算法计算图片y的线性表示系数,计算残差并根据残差所对应的类别确定查询图片的所属类。本发明计算量就会大大减少,实现较高的识别率,也能够大大降低计算复杂度。
-
公开(公告)号:CN106297770A
公开(公告)日:2017-01-04
申请号:CN201610634966.X
申请日:2016-08-04
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于时频域统计特征提取的自然环境识别方法。本发明包括如下步骤:步骤1、采集各类自然环境的声音,如发动机、汽车喇叭、风噪声等,建立声音样本库;步骤2、声音样本信号的加窗分帧处理;步骤3、提取所有帧信号在时域上的统计特征;步骤4、标记特征向量所属声音来源的种类,建立样本特征库;步骤5、利用支持向量机训练特征向量,建立训练模型;步骤6,提取目标声音的特征向量;步骤7、利用支持向量机对目标声音的特征向量进行匹配分类;步骤8、提供识别结果。本发明弥补了传统的声音LPCC和MFCC特征提取方法在时频结合方面的不足,能够判断各类目标声音的所属类型。
-
公开(公告)号:CN118506168A
公开(公告)日:2024-08-16
申请号:CN202410954584.X
申请日:2024-07-17
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
-
-
-
-
-
-
-
-