一种基于超限学习机与稀疏表示分类的改进方法

    公开(公告)号:CN105701506B

    公开(公告)日:2019-01-18

    申请号:CN201610018444.7

    申请日:2016-01-12

    Abstract: 本发明公开了一种基于超限学习机与稀疏表示分类的改进方法。本发明步骤如下:1、随机产生隐层节点参数;2、计算出隐层节点输出矩阵,3、根据L和N的大小关系,采用不同的公式计算出连接隐层节点和输出神经元的输出权重4、计算出查询图片y的输出向量;5、对ELM输出向量ο中的极大值οf和次大值οs的差值进行判断,如果差值大于设定值,则求出输出向量中最大值对应的索引即为查询图片所属类别;否则进入步骤6;6、采用输出向量ο中k个最大值所对应的的训练样本,构造子字典,采用系数重构算法计算图片y的线性表示系数,计算残差并根据残差所对应的的类别确定查询图片的所属类。本发明计算量就会大大减少,实现较高的识别率,也能够大大降低计算复杂度。

    一种基于基频能量分布特征的周期振源距离智能检测方法

    公开(公告)号:CN106249228A

    公开(公告)日:2016-12-21

    申请号:CN201610530164.4

    申请日:2016-06-30

    CPC classification number: G01S11/14 G01S5/30

    Abstract: 本发明公开了一种基于基频能量分布特征的周期振源距离智能检测方法。本发明包括如下步骤:步骤1、基频检测得到周期振动信号的基频;步骤2、依据基频从周期振动信号中提取出一种反映基频能量分布的频带能量百分比特征,即FBEP特征;步骤3、依据已知距离的特征库,将提取出的未知距离的FBEP特征通过KNN法进行分析处理,得到振动信号距离的预测值。运用本发明后,单传感器节点可以实现检测距离,多传感器组合则可以实现交叉定位,并同时确保其精度与可靠性。此外,本发明具有无需事先学习距离特征的优点,从而使此距离检测具有更好的适应性。同时基于互相关法改进的基频检测步骤可以达到较好的距离检测效果。

    基于超复数随机神经网络的城市噪声识别方法

    公开(公告)号:CN111540373A

    公开(公告)日:2020-08-14

    申请号:CN202010029066.9

    申请日:2020-01-12

    Abstract: 本发明公开了一种基于超复数随机神经网络的城市噪声识别方法。本发明将城市噪声信号经过谱减法滤波器,然后提取其MFCC、LSP和PLP特征,再拼接成四元数增广向量,最后经过四元数极限学习机(Q-ELM)实现对噪声信号的分类识别。本发明充分提取了低信噪比情况下,信号中的有用信息,增广四元数结构也可利用各个特征之间的结构信息,可以有效提高城市噪声信号的识别率。

    基于时频域统计特征提取的自然环境声音识别方法

    公开(公告)号:CN106297770B

    公开(公告)日:2019-11-22

    申请号:CN201610634966.X

    申请日:2016-08-04

    Abstract: 本发明公开了一种基于时频域统计特征提取的自然环境识别方法。本发明包括如下步骤:步骤1、采集各类自然环境的声音,如发动机、汽车喇叭、风噪声等,建立声音样本库;步骤2、声音样本信号的加窗分帧处理;步骤3、提取所有帧信号在时域上的统计特征;步骤4、标记特征向量所属声音来源的种类,建立样本特征库;步骤5、利用支持向量机训练特征向量,建立训练模型;步骤6,提取目标声音的特征向量;步骤7、利用支持向量机对目标声音的特征向量进行匹配分类;步骤8、提供识别结果。本发明弥补了传统的声音LPCC和MFCC特征提取方法在时频结合方面的不足,能够判断各类目标声音的所属类型。

    一种基于超限学习机与稀疏表示分类的改进方法

    公开(公告)号:CN105701506A

    公开(公告)日:2016-06-22

    申请号:CN201610018444.7

    申请日:2016-01-12

    CPC classification number: G06K9/6267 G06K9/6259 G06N3/0445

    Abstract: 本发明公开了一种基于超限学习机与稀疏表示分类的改进方法。本发明步骤如下:1、随机产生隐层节点参数;2、计算出隐层节点输出矩阵,3、根据L和N的大小关系,采用不同的公式计算出连接隐层节点和输出神经元的输出权重4、计算出查询图片y的输出向量;5、对ELM输出向量ο中的极大值οf和次大值οs的差值进行判断,如果差值大于设定值,则求出输出向量中最大值对应的索引即为查询图片所属类别;否则进入步骤6;6、采用输出向量ο中k个最大值所对应的训练样本,构造子字典,采用系数重构算法计算图片y的线性表示系数,计算残差并根据残差所对应的类别确定查询图片的所属类。本发明计算量就会大大减少,实现较高的识别率,也能够大大降低计算复杂度。

    基于时频域统计特征提取的自然环境声音识别方法

    公开(公告)号:CN106297770A

    公开(公告)日:2017-01-04

    申请号:CN201610634966.X

    申请日:2016-08-04

    Abstract: 本发明公开了一种基于时频域统计特征提取的自然环境识别方法。本发明包括如下步骤:步骤1、采集各类自然环境的声音,如发动机、汽车喇叭、风噪声等,建立声音样本库;步骤2、声音样本信号的加窗分帧处理;步骤3、提取所有帧信号在时域上的统计特征;步骤4、标记特征向量所属声音来源的种类,建立样本特征库;步骤5、利用支持向量机训练特征向量,建立训练模型;步骤6,提取目标声音的特征向量;步骤7、利用支持向量机对目标声音的特征向量进行匹配分类;步骤8、提供识别结果。本发明弥补了传统的声音LPCC和MFCC特征提取方法在时频结合方面的不足,能够判断各类目标声音的所属类型。

Patent Agency Ranking