-
公开(公告)号:CN109903301A
公开(公告)日:2019-06-18
申请号:CN201910080334.7
申请日:2019-01-28
Applicant: 杭州电子科技大学
IPC: G06T7/13
Abstract: 本发明涉及一种基于多级特征信道优化编码的图像轮廓检测方法。本发明针对输入图像I(x,y),首先基于相似度指标获取Gabor滤波器的最优尺度mopt和方向θopt,并将mopt和θopt作为NSCT的频率分离参数;然后将经过NSCT得到的轮廓子图与I(x,y)进行特征增强融合,实现对I(x,y)的初级轮廓检测;最后针对性地设计全卷积神经网络,包括由不同尺度FCN-32s、FCN-16s、FCN-8s网络单元构成的特征编解码器,利用特征编码器的卷积与池化模块实现网络参数的主动学习,利用特征解码器的反卷积与上采样模块得到与I(x,y)对应的图像轮廓掩模图,实现多级特征信道的优化编码,完成图像轮廓的高效准确检测。
-
公开(公告)号:CN111222518B
公开(公告)日:2023-02-03
申请号:CN202010049312.7
申请日:2020-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于分频视觉机制的轮廓特征提取方法。首先利用高斯函数模拟视通路中外侧膝状体经典感受野对视觉信息的分频作用;然后利用空间频率和朝向调谐之间的全局性抑制作用,并引入低对比度加强后的视觉特征,构建一种朝向敏感以及低对比度适应的感受野,通过外侧膝状体非经典感受野中心‑外周信息差异的检测,从而实现对外周纹理的选择性抑制;最后将纹理抑制后的轮廓信息并行传递至初级视皮层区,实现分频视觉信息流的快速融合编码,以达到轮廓特征提取的快速调节和完整性融合。
-
公开(公告)号:CN109903301B
公开(公告)日:2021-04-13
申请号:CN201910080334.7
申请日:2019-01-28
Applicant: 杭州电子科技大学
IPC: G06T7/13
Abstract: 本发明涉及一种基于多级特征信道优化编码的图像轮廓检测方法。本发明针对输入图像I(x,y),首先基于相似度指标获取Gabor滤波器的最优尺度mopt和方向θopt,并将mopt和θopt作为NSCT的频率分离参数;然后将经过NSCT得到的轮廓子图与I(x,y)进行特征增强融合,实现对I(x,y)的初级轮廓检测;最后针对性地设计全卷积神经网络,包括由不同尺度FCN‑32s、FCN‑16s、FCN‑8s网络单元构成的特征编解码器,利用特征编码器的卷积与池化模块实现网络参数的主动学习,利用特征解码器的反卷积与上采样模块得到与I(x,y)对应的图像轮廓掩模图,实现多级特征信道的优化编码,完成图像轮廓的高效准确检测。
-
公开(公告)号:CN111222518A
公开(公告)日:2020-06-02
申请号:CN202010049312.7
申请日:2020-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于分频视觉机制的轮廓特征提取方法。首先利用高斯函数模拟视通路中外侧膝状体经典感受野对视觉信息的分频作用;然后利用空间频率和朝向调谐之间的全局性抑制作用,并引入低对比度加强后的视觉特征,构建一种朝向敏感以及低对比度适应的感受野,通过外侧膝状体非经典感受野中心-外周信息差异的检测,从而实现对外周纹理的选择性抑制;最后将纹理抑制后的轮廓信息并行传递至初级视皮层区,实现分频视觉信息流的快速融合编码,以达到轮廓特征提取的快速调节和完整性融合。
-
-
-