一种基于小样本学习和特征增强的辐射源个体识别方法

    公开(公告)号:CN111126226B

    公开(公告)日:2023-07-28

    申请号:CN201911302131.4

    申请日:2019-12-17

    Abstract: 本发明公开了一种基于小样本学习和特征增强的辐射源个体识别方法,包括步骤:S11.对不同个体的雷达脉冲信号经过短时傅里叶变换、灰度处理得到雷达脉冲信号的灰度矩阵;S12.将所述得到的灰度矩阵输入至稀疏自编码器中进行特征提取,得到特征矩阵;S13.对所述提取到的特征矩阵利用图像增强的方式进行特征增强,得到增强后的特征矩阵;S14.判断雷达脉冲信号的样本数量是否小于阈值,若是,则将增强后的特征矩阵输入到增强条件对抗生成网络中对样本数量进行扩充,再返回步骤S14;若否,则执行步骤S15;S15.将增强后的特征矩阵输入到卷积神经网络中进行训练,将特征输入到分类器中进行分类识别。

    一种基于小样本学习和特征增强的辐射源个体识别方法

    公开(公告)号:CN111126226A

    公开(公告)日:2020-05-08

    申请号:CN201911302131.4

    申请日:2019-12-17

    Abstract: 本发明公开了一种基于小样本学习和特征增强的辐射源个体识别方法,包括步骤:S11.对不同个体的雷达脉冲信号经过短时傅里叶变换、灰度处理得到雷达脉冲信号的灰度矩阵;S12.将所述得到的灰度矩阵输入至稀疏自编码器中进行特征提取,得到特征矩阵;S13.对所述提取到的特征矩阵利用图像增强的方式进行特征增强,得到增强后的特征矩阵;S14.判断雷达脉冲信号的样本数量是否小于阈值,若是,则将增强后的特征矩阵输入到增强条件对抗生成网络中对样本数量进行扩充,再返回步骤S14;若否,则执行步骤S15;S15.将增强后的特征矩阵输入到卷积神经网络中进行训练,将特征输入到分类器中进行分类识别。

Patent Agency Ranking