-
公开(公告)号:CN115079116A
公开(公告)日:2022-09-20
申请号:CN202210391518.7
申请日:2022-04-14
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于Transformer和时间卷积网络的雷达目标识别方法,首先对原始HRRP样本集进行预处理;通过卷积模块对样本进行特征提取并改变数据格式;再通过基于VIT的MoCo对比学习模块,在特征空间上学习区分不同样本;之后将经过MoCo对比学习模块得到的特征,输入时间卷积模块,进一步地加强模型的表征能力,得到可分性更强的特征;最后通过全连接层将更有效的特征进行保留,最后采用softmax对网络的输出进行分类。本发明中应用引入时间卷积网络,使模型获取HRRP中更为全面的信息,进一步提高模型的特征提取能力,得到可分性更强的特征用于分类。
-
公开(公告)号:CN115047421A
公开(公告)日:2022-09-13
申请号:CN202210391520.4
申请日:2022-04-14
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于Transformer的雷达目标识别方法,首先对原始HRRP样本集进行预处理,然后采用多尺度CNN来融合多种不同感受野的特征,并用SE模块基于通道之间的依赖关系进行建模,再采用Albert模型对HRRP数据进行建模。最后通过注意力分类模块对特征进行分类,完成HRRP识别。本发明应用堆叠Albert模块结合多头注意力机制来提取HRRP的双向特征。采用多尺度CNN结合SE模块来代替嵌入表示。针对HRRP的特殊性,利用多尺度卷积提取HRRP的多层次空间特征,通过不同的卷积核提取不同尺度的结构特征,并通过SE模块实现通道的重要性调整,提高了网络初期的表达能力。
-
公开(公告)号:CN114861712A
公开(公告)日:2022-08-05
申请号:CN202210413812.3
申请日:2022-04-14
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于改进时序卷积网络的雷达目标识别方法,首先对原始HRRP样本集进行预处理,采用TCN模型提取HRRP的数据特征;然后采用多层次注意力模块,自适应的缩放数据不同片段的特征重要性;最后通过全连接层将更有效的特征进行保留,最后采用softmax对网络的输出进行分类。本发明通过因果卷积来建立HRRP的因果序列特性,并且通过膨胀卷积和堆叠模型深度来扩大模型的感受野,提取更全面的特征信息。提出了针对多层时间卷积网络的多层次注意力机制,对不同层次反映的目标结构特征进行重要性调整,突出可分性强的层次特征,抑制无用特征,自适应调整各个层次输出对识别结果的影响。
-
-