基于深度卷积神经网络的雷达一维距离像目标识别方法

    公开(公告)号:CN109086700B

    公开(公告)日:2021-08-13

    申请号:CN201810806078.0

    申请日:2018-07-20

    Abstract: 本发明公开了基于深度卷积神经网络的雷达一维距离像目标识别方法,包括以下步骤:采集数据集,对采集到的数据进行预处理,从预处理后的数据中提取特征,设立阈值将采集到的雷达HRRP信号分成低信噪比和高信噪比样本两个部分,构建基于稳健玻尔兹曼的特征增强算法,构建基于卷积神经网络和基于LSTM的双向循环神经网络的HRRP目标识别模型,使用梯度下降算法对构建的网络模型的参数进行微调,得到有效的目标识别模型。本发明构建小样本稳健性和噪声稳健性的雷达HRRP自动目标识别技术具有很强的工程实用性,从特征提取和分类器的设计方面,提出了一种基于卷积神经网络+循环神经网络的雷达一维距离像目标识别模型。

    基于注意深度双向循环神经网络的HRRP目标识别方法

    公开(公告)号:CN109214452B

    公开(公告)日:2020-06-23

    申请号:CN201810998889.5

    申请日:2018-08-29

    Abstract: 本发明公开了一种基于注意深度双向循环神经网络的HRRP目标识别方法,首先提取数据的时域特征并对提取出的时域特征进行切分和非均匀量化编码得到其局部结构的编码,然后利用其局部结构和周围数个局部结构的关系得到其编码之间的共现矩阵,进而通过该共现矩阵得到数据的结构嵌入特征,然后再将提取出的嵌入特征送入由全连接层和基于注意LSTM的双向循环神经网络构成的深度神经网络进行训练,同时根据循环网络隐层的输出,采用softmax层得到注意力模型的权重参数,最后利用softmax层和注意模型的权重对HRRP进行识别并得到识别结果。

    基于注意深度双向循环神经网络的HRRP目标识别方法

    公开(公告)号:CN109214452A

    公开(公告)日:2019-01-15

    申请号:CN201810998889.5

    申请日:2018-08-29

    Abstract: 本发明公开了一种基于注意深度双向循环神经网络的HRRP目标识别方法,首先提取数据的时域特征并对提取出的时域特征进行切分和非均匀量化编码得到其局部结构的编码,然后利用其局部结构和周围数个局部结构的关系得到其编码之间的共现矩阵,进而通过该共现矩阵得到数据的结构嵌入特征,然后再将提取出的嵌入特征送入由全连接层和基于注意LSTM的双向循环神经网络构成的深度神经网络进行训练,同时根据循环网络隐层的输出,采用softmax层得到注意力模型的权重参数,最后利用softmax层和注意模型的权重对HRRP进行识别并得到识别结果。

    基于特征金字塔结构的多角度遥感船舶图像目标检测方法

    公开(公告)号:CN111753677B

    公开(公告)日:2023-10-31

    申请号:CN202010521967.X

    申请日:2020-06-10

    Abstract: 本发明公开了一种基于特征金字塔结构的多角度遥感船舶图像目标检测方法,包括以下步骤:S1,收集遥感卫星船舶图像数据集,并进行样本标注,得到标注目标;S2,对经过S1所提取的数据集中的样本进行数据预处理,形成完整的训练数据集;S3,用经过改进的特征金字塔网络对预处理后的样本进行特征提取,得到多层特征融合的特征金字塔;S4,经过RPN网络生成候选区域;S5,添加不同池化大小的ROI Pooling层;S6,搭建Fast R‑CNN网络;S7,对由S1采集到的测试数据进行训练阶段的步骤S2预处理操作;S8,将经过S7处理的样本送入S3、S4、S5和S6构建的模型中进行测试求得结果,即最后经过Fast R‑CNN输出分类与回归的结果。

    基于条件生成式对抗网络的雷达一维距离像拒判方法

    公开(公告)号:CN110033043B

    公开(公告)日:2020-11-10

    申请号:CN201910306521.2

    申请日:2019-04-16

    Abstract: 本发明公开了一种基于条件生成式对抗网络的雷达一维距离像拒判方法,包括如下步骤:S1:对原始HRRP样本集进行预处理;S2:搭建模型:在TensorFlow平台上搭建条件生成式对抗网络,根据网络特点设计优化目标函数;S3:调参训练:每一帧都按相同步骤训练出一个判别器,使用所述优化目标函数进行参数更新;S4:用训练好的模型在测试样本集上进行测试:从每一帧训练集所训练出的条件生成式判别网络中分别提取出判别器进行测试,对判别器设置相应阈值,若测试样本经过所有判别器的输出都小于阈值,则对该测试样本进行拒判。

    基于结构嵌入和深度神经网络的雷达HRRP识别方法

    公开(公告)号:CN109239670B

    公开(公告)日:2020-08-04

    申请号:CN201810998871.5

    申请日:2018-08-29

    Abstract: 本发明公开了一种基于结构嵌入和深度神经网络的雷达HRRP识别方法,首先提取数据的时域特征并对提取出的时域特征进行切分和非均匀量化编码得到其局部结构的编码,然后利用局部结构和其周围数个局部结构的关系得到其编码之间的共现矩阵,进而通过该共现矩阵得到数据的结构嵌入特征,然后再将提取出的嵌入特征送入由全连接层和基于LSTM的双向循环神经网络构成的深度神经网络进行训练,最后利用softmax层对HRRP进行识别并得到识别结果。

Patent Agency Ranking