一种感知知识掌握程度的教育习题智能推荐方法

    公开(公告)号:CN118035568B

    公开(公告)日:2024-07-05

    申请号:CN202410437158.9

    申请日:2024-04-12

    Applicant: 暨南大学

    Abstract: 本发明涉及习题推荐技术领域,特别是涉及一种感知知识掌握程度的教育习题智能推荐方法,包括:获取第一预设时间内用户的历史答题信息;将历史答题信息输入预设的感知预测模型中,输出第二预设时间内用户的推荐练习习题,其中,感知预测模型通过数据集训练,数据集包含习题序列,习题序列为第三预设时间内用户的历史答题信息按时间先后顺序组成,第三预设时间大于且不包含第一预设时间;感知预测模型包括感知模块和预测模块,感知模块用于对数据集中的习题序列进行处理,获取输出向量;预测模块用于对输出向量进行处理,输出推荐结果。本发明能够为用户进行精准、有效的习题推荐。

    一种基于图神经网络的学习群体差异评价方法与系统

    公开(公告)号:CN117540104A

    公开(公告)日:2024-02-09

    申请号:CN202311762184.0

    申请日:2023-12-20

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。

    一种基于图神经网络的学习群体差异评价方法与系统

    公开(公告)号:CN117540104B

    公开(公告)日:2024-08-02

    申请号:CN202311762184.0

    申请日:2023-12-20

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。

    一种感知知识掌握程度的教育习题智能推荐方法

    公开(公告)号:CN118035568A

    公开(公告)日:2024-05-14

    申请号:CN202410437158.9

    申请日:2024-04-12

    Applicant: 暨南大学

    Abstract: 本发明涉及习题推荐技术领域,特别是涉及一种感知知识掌握程度的教育习题智能推荐方法,包括:获取第一预设时间内用户的历史答题信息;将历史答题信息输入预设的感知预测模型中,输出第二预设时间内用户的推荐练习习题,其中,感知预测模型通过数据集训练,数据集包含习题序列,习题序列为第三预设时间内用户的历史答题信息按时间先后顺序组成,第三预设时间大于且不包含第一预设时间;感知预测模型包括感知模块和预测模块,感知模块用于对数据集中的习题序列进行处理,获取输出向量;预测模块用于对输出向量进行处理,输出推荐结果。本发明能够为用户进行精准、有效的习题推荐。

Patent Agency Ranking