-
公开(公告)号:CN110458060A
公开(公告)日:2019-11-15
申请号:CN201910694429.8
申请日:2019-07-30
Applicant: 暨南大学
Abstract: 本发明公开了一种基于对抗学习的车辆图像优化方法及系统,该方法的步骤为:收集不同角度拍摄的车辆图像,将车辆图像划分为标准场景图像和非标准场景图像;对非标准图像进行图像预处理后作为低质量数据集;构建基于生成对抗网络的车辆图像优化模型,模型由生成器、判别器和特征提取器构成;训练基于生成对抗网络的车辆图像优化模型,设置损失函数,采用反向传播计算网络权重梯度并更新车辆图像优化模型参数;车辆图像优化模型训练完成后,保留生成器作为最终的车辆图像优化模型,输入多场景车辆图像,输出优化的标准场景图像。本发明实现复杂场景车辆图像到标准场景车辆图像迁移,达到优化图像质量目的,提升车辆检测识别准确率。