-
公开(公告)号:CN109635643B
公开(公告)日:2023-10-31
申请号:CN201811295723.3
申请日:2018-11-01
Applicant: 暨南大学
IPC: G06V40/16 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于深度学习的快速人脸识别方法,该快速人脸识别方法针对实时人脸识别技术受限于网络带宽和硬件处理能力的影响以及识别速度不高的问题进行了探索,在兼顾人脸识别准确率的同时,考虑到人脸识别占用内存空间和识别速度问题,对轻量级的卷积神经网络模型SqueezeNet进行改进,实现SqueezeNet的特征提取和分类功能分离,以欧式距离代替Softmax和全连接层的分类能力来减少模型参数,利用改进的SqueezeNet提取特征,利用欧氏距离进行分类识别,不仅可以兼顾识别准确率,而且能提高人脸识别的识别速度,相比于现有技术算法,具有一定优势。
-
公开(公告)号:CN109635643A
公开(公告)日:2019-04-16
申请号:CN201811295723.3
申请日:2018-11-01
Applicant: 暨南大学
CPC classification number: G06K9/00288 , G06K9/00268 , G06K9/6257 , G06K9/6282 , G06N3/0454
Abstract: 本发明公开了一种基于深度学习的快速人脸识别方法,该快速人脸识别方法针对实时人脸识别技术受限于网络带宽和硬件处理能力的影响以及识别速度不高的问题进行了探索,在兼顾人脸识别准确率的同时,考虑到人脸识别占用内存空间和识别速度问题,对轻量级的卷积神经网络模型SqueezeNet进行改进,实现SqueezeNet的特征提取和分类功能分离,以欧式距离代替Softmax和全连接层的分类能力来减少模型参数,利用改进的SqueezeNet提取特征,利用欧氏距离进行分类识别,不仅可以兼顾识别准确率,而且能提高人脸识别的识别速度,相比于现有技术算法,具有一定优势。
-