-
公开(公告)号:CN118228131B
公开(公告)日:2024-09-17
申请号:CN202410650199.6
申请日:2024-05-24
Applicant: 暨南大学
IPC: G06F18/2413 , G06F17/18 , G06F18/10
Abstract: 本发明公开了一种面向KNN缺失值填充模型的数据投毒检测方法,属于机器学习、缺失值填充技术领域,包括:设置阈值系数并计算异常阈值,其次使用改进的局部密度异常因子算法计算计算数据集中不同缺失样本的局部密度异常因子,随后通过对比不同缺失样本的局部密度异常因子更新每个缺失样本的异常计数器,而后再检查每个缺失样本的异常计数器是否异常阈值来确定攻击者意欲攻击的目标缺失样本,最后再通过清除目标缺失样本的K个邻近进而清除数据集中的有毒样本。该检测方法可以通过灵活设定阈值系数进而选择检测强度。为防御面向KNN模型的针对性投毒攻击提供了参考依据,具备现实意义。
-
公开(公告)号:CN118228131A
公开(公告)日:2024-06-21
申请号:CN202410650199.6
申请日:2024-05-24
Applicant: 暨南大学
IPC: G06F18/2413 , G06F17/18 , G06F18/10
Abstract: 本发明公开了一种面向KNN缺失值填充模型的数据投毒检测方法,属于机器学习、缺失值填充技术领域,包括:设置阈值系数并计算异常阈值,其次使用改进的局部密度异常因子算法计算计算数据集中不同缺失样本的局部密度异常因子,随后通过对比不同缺失样本的局部密度异常因子更新每个缺失样本的异常计数器,而后再检查每个缺失样本的异常计数器是否异常阈值来确定攻击者意欲攻击的目标缺失样本,最后再通过清除目标缺失样本的K个邻近进而清除数据集中的有毒样本。该检测方法可以通过灵活设定阈值系数进而选择检测强度。为防御面向KNN模型的针对性投毒攻击提供了参考依据,具备现实意义。
-