-
公开(公告)号:CN117995198B
公开(公告)日:2024-07-05
申请号:CN202410389359.6
申请日:2024-04-02
Applicant: 暨南大学
IPC: G10L17/18 , G10L15/06 , G10L17/04 , G10L25/51 , G06F18/213 , G06F18/24 , G06N3/045 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/048 , G06N3/094
Abstract: 本发明公开了一种基于多任务对抗解耦学习的语音隐私保护方法及系统,该方法包括下述步骤:对语音信号提取声学特征得到特征编码结果,基于三个并行的通道注意力计算模块构建信息解耦模块,将特征编码结果进行多任务解耦特征学习,进行年龄段分类、自动语音解码和身份识别,并基于年龄段分类、自动语音解码和身份识别对应的损失函数进行监督训练,计算解耦特征信息的整体相似度并构建最小‑最大目标,HiFi‑GAN生成器将相加后的特征信息进行隐秘音频重建,输出隐秘音频。本发明在维护隐私的同时避免丢失其中的年龄属性,并确保下游的年龄估计任务具有良好的预测精度,并且从隐私保护的角度出发添加相似度约束,实现高精度的年龄识别。
-
公开(公告)号:CN116311254A
公开(公告)日:2023-06-23
申请号:CN202310579491.9
申请日:2023-05-23
Applicant: 暨南大学
IPC: G06V20/70 , G06V10/30 , G06V10/36 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/084
Abstract: 本发明公开了一种恶劣天气情况下的图像目标检测方法、系统及设备,该方法包括下述步骤:采集在恶劣天气环境下的原始图像,预处理后得到雾霾图像和暗光图像,经过图像去噪滤波器得到对应的清晰化图像,经过掩码自编码器掩码编码再解码还原得到原图,构建正样本集合进行对比学习,更新编码器的参数,对图像数据集中的图像数据进行Prompt文本描述得到文本描述,文本描述经过Bert模型编码得到Prompt向量编码,将Prompt向量编码与有标签的图像数据输入更新参数后的编码器进行训练,待检测的恶劣天气环境图像输入至目标检测模块得到图像分类信息与定位信息。本发明提高恶劣天气条件下图像目标检测的鲁棒性以及识别准确率。
-
公开(公告)号:CN118013372B
公开(公告)日:2024-08-02
申请号:CN202410257623.0
申请日:2024-03-07
Applicant: 暨南大学
IPC: G06F18/241 , G06N3/0455 , G06F18/213 , G06F16/35 , G06V10/40 , G06V10/764 , G06V10/82 , G06F18/22 , G06F18/25 , G06N3/047 , G06F18/2415 , G06N3/0895
Abstract: 本发明公开了一种基于多模态数据异构Transformer资产识别方法、系统及设备,该方法包括下述步骤:采集资产各个模态的信息,包括文本信息和图像信息;构建ALBERT模型、ViT模型和CLIP模型;基于ALBERT模型进行文本信息特征提取;基于ViT模型进行图像信息特征提取;基于CLIP模型进行图像文本匹配信息特征提取;对不同模态的信息进行不同通道的资产类型识别,输出不同通道的分类信息,基于CLIP模型对资产缺失信息进行生成;将不同通道的分类信息与CLIP模型得到的图像信息与文本信息的匹配度进行判别融合,输出最终的资产类别信息。本发明能从多个模态进行综合判断,提高资产识别的准确率。
-
公开(公告)号:CN117975971B
公开(公告)日:2024-07-05
申请号:CN202410389361.3
申请日:2024-04-02
Applicant: 暨南大学
IPC: G10L17/18 , G10L17/04 , G10L25/51 , G06F18/213 , G06F18/24 , G06N3/0464 , G06N3/048 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了一种基于隐私保护的声纹年龄段估计方法及系统,该方法包括下述步骤:获取原始声纹并进行分帧处理,识别并标记原始声纹的敏感信息,进行脱敏处理并输出具有差分隐私噪声的声纹数据,基于多重编码器进行编码并进行维度叠加及卷积操作,将增强后的特征向量进行维度特征交互,得到维度扩展的特征向量,融合时域和空域信息得到融合特征向量,进行维度变换和非线性映射得到低维特征表示,利用残差链接整合低维特征表示和维度扩展的特征向量,得到用于年龄估计的特征表示,用于年龄估计的特征表示输入Softmax分类器得到声纹年龄段估计结果。本发明更精准地捕捉声音数据中的年龄相关特征,提高隐私条件下年龄段估计的鲁棒性和准确性。
-
公开(公告)号:CN118013372A
公开(公告)日:2024-05-10
申请号:CN202410257623.0
申请日:2024-03-07
Applicant: 暨南大学
IPC: G06F18/241 , G06N3/0455 , G06F18/213 , G06F16/35 , G06V10/40 , G06V10/764 , G06V10/82 , G06F18/22 , G06F18/25 , G06N3/047 , G06F18/2415 , G06N3/0895
Abstract: 本发明公开了一种基于多模态数据异构Transformer资产识别方法、系统及设备,该方法包括下述步骤:采集资产各个模态的信息,包括文本信息和图像信息;构建ALBERT模型、ViT模型和CLIP模型;基于ALBERT模型进行文本信息特征提取;基于ViT模型进行图像信息特征提取;基于CLIP模型进行图像文本匹配信息特征提取;对不同模态的信息进行不同通道的资产类型识别,输出不同通道的分类信息,基于CLIP模型对资产缺失信息进行生成;将不同通道的分类信息与CLIP模型得到的图像信息与文本信息的匹配度进行判别融合,输出最终的资产类别信息。本发明能从多个模态进行综合判断,提高资产识别的准确率。
-
公开(公告)号:CN117455994B
公开(公告)日:2024-06-14
申请号:CN202311472686.X
申请日:2023-11-07
Applicant: 暨南大学
Abstract: 本发明涉及人工智能领域,尤其涉及一种相机位姿估计方法、系统、电子设备及可读介质。一种相机位姿估计方法,包括:获取第一图像和第二图像之间的初始匹配集;所述第一图像和所述第二图像为针对同一场景的不同角度的图像;基于优化网络对所述初始匹配集进行误匹配去除操作,得到优化匹配集;所述优化网络基于多阶段几何语义注意力网络构建得到;基于所述优化匹配集获取相机位姿结果。通过对误匹配的去除,使得第一图像和第二图像之间的特征匹配结果更佳精准,以此进行相机位姿估计时,结果更佳准确。
-
公开(公告)号:CN117237680B
公开(公告)日:2024-03-12
申请号:CN202311050564.1
申请日:2023-08-18
Applicant: 暨南大学
Abstract: 本发明公开了一种基于异质模型拟合的多源图像匹配方法及系统,该方法包括下述步骤:构建多方向相位一致性模型,融合相位一致性、图像幅度和方向检测特征点,利用子区域网格和方向直方图构建具有可变大小箱体的对数极坐标描述符,通过异质模型拟合有效估计模型的参数,累加来自不同异质模型的满足预设联合位置偏移变换误差的匹配对,输出最终匹配对,完成多源图像匹配。本发明通过构建多方向相位一致性模型,降低了非线性辐射失真的影响,利用子区域网格和方向直方图构建具有可变大小箱体的对数极坐标描述符,使用异质模型拟合方法去除多源图像中的异常匹配关系,输出最终匹配关系,从而提高特征检测的准确性和鲁棒性,提高多源图像匹配性能。
-
公开(公告)号:CN117240429A
公开(公告)日:2023-12-15
申请号:CN202311058830.5
申请日:2023-08-21
Applicant: 暨南大学
IPC: H04L9/00 , H04L9/32 , H04L41/00 , H04L67/1095
Abstract: 本发明公开了一种支持跨链交易的高速跨链验证方法及主链,方法包括:交易发起链利用可编辑区块并根据交易发起者的需求对区块中的数据进行删减;采用间隔分叉模式并结合动态调整间隔分叉算法以每隔预设数量的块产生一个分叉;对交易发起链中的跨链区块集合进行跨链验证,通过跨链验证算法对所述跨链区块集合中的当前块到倒数第二个分叉点之间的区块D进行跨链验证;在跨链验证过程中引入对称加密算法和解密算法对区块D进行跨链数据加密;引入跨链智能合约,实现所述跨链验证算法以及跨链数据加密的智能处理和自动执行;利用跨链共识算法进行数据同步,将跨链验证的结果同步到其他区块链上,确保共识。本发明实现了跨链交易的高速跨链验证。
-
公开(公告)号:CN118410173A
公开(公告)日:2024-07-30
申请号:CN202410264937.3
申请日:2024-03-08
Applicant: 暨南大学
IPC: G06F16/36 , G06F16/35 , G06F18/214 , G06F18/2415 , G06F18/10 , G06F18/213
Abstract: 本发明公开了一种基于时序知识图谱的系统用户行为预测分析方法、系统及设备,该方法包括下述步骤:提取及组合用户行为特征,进行数据预处理;在设定的时间戳下构建动态时序知识图谱,基于关系特征提取器提取同一段时间域的多个行为关系对应的邻域特征作为目标用户在该时刻域的行为向量;构建XLnet网络模型,XLnet网络模型将动态时序知识图谱转化的行为向量输出为分布向量,在XLnet网络模型上添加Softmax层,将XLnet网络模型输出的分布向量转化为行为分类概率,通过分类概率的概率值对应得到预测行为类型。本发明在用户行为预测分析时能够更全面地考虑时间关系和语境信息,对用户行为做出更加准确的预测。
-
公开(公告)号:CN117455994A
公开(公告)日:2024-01-26
申请号:CN202311472686.X
申请日:2023-11-07
Applicant: 暨南大学
Abstract: 本发明涉及人工智能领域,尤其涉及一种相机位姿估计方法、系统、电子设备及可读介质。一种相机位姿估计方法,包括:获取第一图像和第二图像之间的初始匹配集;所述第一图像和所述第二图像为针对同一场景的不同角度的图像;基于优化网络对所述初始匹配集进行误匹配去除操作,得到优化匹配集;所述优化网络基于多阶段几何语义注意力网络构建得到;基于所述优化匹配集获取相机位姿结果。通过对误匹配的去除,使得第一图像和第二图像之间的特征匹配结果更佳精准,以此进行相机位姿估计时,结果更佳准确。
-
-
-
-
-
-
-
-
-