一种基于多维度知识蒸馏的轻量级图像超分辨率重建方法

    公开(公告)号:CN113240580A

    公开(公告)日:2021-08-10

    申请号:CN202110380519.7

    申请日:2021-04-09

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于多维度知识蒸馏的轻量级图像超分辨率重建方法,该方法步骤包括:教师网络预处理;数据集预处理生成低分辨率图像;将低分辨率图像输入构建的学生网络中,输出学生网络重建的超分辨率图像;将低分辨率图像输入到多个教师网络中用于得到重建的超分辨率图像组;将学生网络重建的超分辨率图与教师网络重建的超分辨率图像组分别进行L1损失和感知损失计算,通过反向传播更新训练得到最终的学生网络模型;将低分辨率图片输入最终的网络模型,输出超分辨率图像。本发明的超分辨率训练方式减少了参数量,获得与成对数据训练出来的全监督教师网络可比的指标和视觉效果,同时模型大小得到了有效减少,与传统训练方式相比有明显提升。

    一种基于多维度知识蒸馏的轻量级图像超分辨率重建方法

    公开(公告)号:CN113240580B

    公开(公告)日:2022-12-27

    申请号:CN202110380519.7

    申请日:2021-04-09

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于多维度知识蒸馏的轻量级图像超分辨率重建方法,该方法步骤包括:教师网络预处理;数据集预处理生成低分辨率图像;将低分辨率图像输入构建的学生网络中,输出学生网络重建的超分辨率图像;将低分辨率图像输入到多个教师网络中用于得到重建的超分辨率图像组;将学生网络重建的超分辨率图与教师网络重建的超分辨率图像组分别进行L1损失和感知损失计算,通过反向传播更新训练得到最终的学生网络模型;将低分辨率图片输入最终的网络模型,输出超分辨率图像。本发明的超分辨率训练方式减少了参数量,获得与成对数据训练出来的全监督教师网络可比的指标和视觉效果,同时模型大小得到了有效减少,与传统训练方式相比有明显提升。

Patent Agency Ranking