用于对时空序列数据进行分类/预测的设备和方法

    公开(公告)号:CN106610980A

    公开(公告)日:2017-05-03

    申请号:CN201510690684.7

    申请日:2015-10-22

    CPC classification number: G06F17/30241 G06K9/6262 G06K9/6267

    Abstract: 提供了一种用于对时空序列数据进行分类/预测的设备,包括:接收单元,被配置为接收时空序列数据;建模单元,被配置为基于时空序列数据产生与地理上的异构性有关的权重参数,并基于所产生的权重参数构建用于分类/预测的模型;以及分类/预测单元,被配置为采用所构建的用于分类/预测的模型对时空序列数据进行分类/预测。还提供了一种用于对时空序列数据进行分类/预测的方法。本发明提出的地理加权极限学习机考虑到地理空间的异构性,能够提高对时空序列数据进行分类或预测的精度。

    用于对时空序列数据进行分类/预测的设备和方法

    公开(公告)号:CN106610980B

    公开(公告)日:2022-03-18

    申请号:CN201510690684.7

    申请日:2015-10-22

    Abstract: 提供了一种用于对时空序列数据进行分类/预测的设备,包括:接收单元,被配置为接收时空序列数据;建模单元,被配置为基于时空序列数据产生与地理上的异构性有关的权重参数,并基于所产生的权重参数构建用于分类/预测的模型;以及分类/预测单元,被配置为采用所构建的用于分类/预测的模型对时空序列数据进行分类/预测。还提供了一种用于对时空序列数据进行分类/预测的方法。本发明提出的地理加权极限学习机考虑到地理空间的异构性,能够提高对时空序列数据进行分类或预测的精度。

Patent Agency Ranking