用于多模态隐喻检测的模态表征分解方法

    公开(公告)号:CN118673401A

    公开(公告)日:2024-09-20

    申请号:CN202410694269.8

    申请日:2024-05-30

    Applicant: 新疆大学

    Abstract: 用于多模态隐喻检测的模态表征分解方法,属于自然语言处理的技术领域。该方法通过不同的Projector将每个模态表征分解为一致性特征和差异性特征。然后,利用设计的对比学习框架为模态的一致性特征和差异性特征学习提供更为全面的视角。同时,为了保留与隐喻检测任务相关模态特异性信息,设计了多任务学习框架,该任务依赖于每个模态的分解表征,使模型能够从单模态预测中进行学习,减少特异性隐喻信息丢失。通过精心设计的对比学习和多任务学习联合框架,确保所有模态中的特征都能够在多个训练路径中得到充分的调整和优化。

Patent Agency Ranking