-
公开(公告)号:CN116884499A
公开(公告)日:2023-10-13
申请号:CN202310858474.9
申请日:2023-07-12
IPC: G16B40/00 , G16B25/10 , G06N3/0455 , G06N3/084
Abstract: 本发明公开了基于变分自编码器的单细胞转录因子调控网络构建方法,涉及基因转录调控领域,该方法包括:根据scATAC‑seq数据和scRNA‑seq数据,确定输入矩阵和真实标签矩阵;构建转录因子调控网络模型,并根据输入矩阵和转录因子调控网络模型确定预测标签矩阵;根据真实标签矩阵和预测标签矩阵,确定转录因子调控网络模型损失;采用双级优化策略对转录因子调控网络模型的内部参数进行更新;采用更新内部参数后的转录因子调控网络模型构建转录因子调控网络。本发明能提取并对齐单细胞ATAC‑seq和单细胞RNA‑seq数据中的高阶特征,结构化转录因子的调控关系,进而更全面准确地构建转录因子调控网络。
-
公开(公告)号:CN116386720A
公开(公告)日:2023-07-04
申请号:CN202310383948.9
申请日:2023-04-11
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于深度学习和注意力机制的单细胞转录因子预测方法,其包括获取单细胞染色质可及性分析测序数据,并对其进行预处理,之后进行数据增强操作,得到增强测序数据;提取增强测序数据中的回归峰作为特征向量S,拼接正向和反向的增强测序数据作为特征向量A,将取自全基因组的DNA序列数据转换为特征向量U;拼接特征向量S、特征向量A和特征向量U,并输入深度网络模型预测单细胞中每个转录因子的概率,深度网络模型包括卷积模块和通道注意力模型。
-