-
公开(公告)号:CN113159363B
公开(公告)日:2022-04-19
申请号:CN202011607205.8
申请日:2020-12-30
Applicant: 成都信息工程大学
IPC: G06Q10/04 , G06F16/951 , G06F16/906 , G06F16/955 , G06F40/289 , G06K9/62
Abstract: 本发明涉及一种基于历史新闻报道的事件趋势预测方法,首先确定待预测新事件领域,基于公开数据集或网络采集的数据获取同类事件;在每个同类事件内部,将描述同一具体事件的新闻聚类为一个子事件,根据事件内容的关联性和时间先后顺序,获得每个子事件后续事件分布信息;计算同类事件和待预测新事件的相似度获得相似事件;再在相似事件内部通过计算相似度得到当前子事件和相似事件中的子事件的相似度,根据前述两个相似度和事件分布信息,对当前子事件的发展趋势进行预测,本发明方法避免了人工趋势预测的主观性和随意性,能够全面且量化地给出未来事件发展的各种可能,有利于相关人员进行不确定场景下的分析和预测。
-
公开(公告)号:CN113159363A
公开(公告)日:2021-07-23
申请号:CN202011607205.8
申请日:2020-12-30
Applicant: 成都信息工程大学
IPC: G06Q10/04 , G06F16/951 , G06F16/906 , G06F16/955 , G06F40/289 , G06K9/62
Abstract: 本发明涉及一种基于历史新闻报道的事件趋势预测方法,首先确定待预测新事件领域,基于公开数据集或网络采集的数据获取同类事件;在每个同类事件内部,将描述同一具体事件的新闻聚类为一个子事件,根据事件内容的关联性和时间先后顺序,获得每个子事件后续事件分布信息;计算同类事件和待预测新事件的相似度获得相似事件;再在相似事件内部通过计算相似度得到当前子事件和相似事件中的子事件的相似度,根据前述两个相似度和事件分布信息,对当前子事件的发展趋势进行预测,本发明方法避免了人工趋势预测的主观性和随意性,能够全面且量化地给出未来事件发展的各种可能,有利于相关人员进行不确定场景下的分析和预测。
-