-
公开(公告)号:CN114550308B
公开(公告)日:2022-07-05
申请号:CN202210424128.5
申请日:2022-04-22
Applicant: 成都信息工程大学
IPC: G06V40/20 , G06V10/42 , G06V10/44 , G06V10/77 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于时空图的人体骨骼动作识别方法,包括以下步骤:S1、获取骨骼数据,并对所述骨骼数据进行预处理,得到二阶数据信息;S2、将二阶数据信息输入多分支网络,得到骨骼数据提取信息;S3、将骨骼数据提取信息输入时空特征提取网络,得到骨骼数据的时空特征信息;S4、将骨骼数据的时空特征信息依次输入全局平均池化层和全连接层,得到置信度最高的动作,完成人体骨骼动作识别。本发明设计了时空图模块引入Transformer结构,可以更好捕捉若干帧内全局的时空关系,利用其注意力机制自适应的学习跨帧节点间关联性的强度,并且利用图卷积根据固定图结构捕捉局部的空间特征。两者信息相互补充,从而使得信息能够直接的跨时空交流。
-
公开(公告)号:CN114550308A
公开(公告)日:2022-05-27
申请号:CN202210424128.5
申请日:2022-04-22
Applicant: 成都信息工程大学
IPC: G06V40/20 , G06V10/42 , G06V10/44 , G06V10/77 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于时空图的人体骨骼动作识别方法,包括以下步骤:S1、获取骨骼数据,并对所述骨骼数据进行预处理,得到二阶数据信息;S2、将二阶数据信息输入多分支网络,得到骨骼数据提取信息;S3、将骨骼数据提取信息输入时空特征提取网络,得到骨骼数据的时空特征信息;S4、将骨骼数据的时空特征信息依次输入全局平均池化层和全连接层,得到置信度最高的动作,完成人体骨骼动作识别。本发明设计了时空图模块引入Transformer结构,可以更好捕捉若干帧内全局的时空关系,利用其注意力机制自适应的学习跨帧节点间关联性的强度,并且利用图卷积根据固定图结构捕捉局部的空间特征。两者信息相互补充,从而使得信息能够直接的跨时空交流。
-