-
公开(公告)号:CN114708236B
公开(公告)日:2023-04-07
申请号:CN202210386468.3
申请日:2022-04-11
Applicant: 徐州医科大学
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于TSN和SSN在超声图像中的甲状腺结节良恶性分类方法,包括如下步骤:收集甲状腺结节的超声图像和病理结果,生成甲状腺结节的轮廓掩膜图像;建立纹理聚焦流网络TSN;建立轮廓检测CD模块引导的形状聚焦流网络SSN;将TSN和SSN的输出拼接在一起进行结节分类;采用CAM注意力网络来引导TSN和SSN,使得决策注意力集中在结节区域;将决策注意图限制在轮廓掩膜的范围内,获取最终甲状腺结节性质的分类。本发明设计的TSN和SSN可以很好地互补,能够捕捉更加丰富的结节特征信息,能够明显提高TSN和SSN双流网络的性能。本发明性能稳定,准确率高,为临床提供客观参考。
-
公开(公告)号:CN114708236A
公开(公告)日:2022-07-05
申请号:CN202210386468.3
申请日:2022-04-11
Applicant: 徐州医科大学
Abstract: 本发明公开了一种基于TSN和SSN在超声图像中的甲状腺结节良恶性分类方法,包括如下步骤:收集甲状腺结节的超声图像和病理结果,生成甲状腺结节的轮廓掩膜图像;建立纹理聚焦流网络TSN;建立轮廓检测CD模块引导的形状聚焦流网络SSN;将TSN和SSN的输出拼接在一起进行结节分类;采用CAM注意力网络来引导TSN和SSN,使得决策注意力集中在结节区域;将决策注意图限制在轮廓掩膜的范围内,获取最终甲状腺结节性质的分类。本发明设计的TSN和SSN可以很好地互补,能够捕捉更加丰富的结节特征信息,能够明显提高TSN和SSN双流网络的性能。本发明性能稳定,准确率高,为临床提供客观参考。
-