文本对抗样本生成方法、系统、计算机设备和存储介质

    公开(公告)号:CN114091448B

    公开(公告)日:2024-09-10

    申请号:CN202111237436.9

    申请日:2021-10-22

    Applicant: 广州大学

    Abstract: 本发明公开了文本对抗样本生成方法、系统、计算机设备和存储介质。所述方法包括:对获取的数据集中的单词进行tf‑idf得分计算,得到所述数据集的词性词典和不同标签对应的攻击词集;从所述数据集中选择与原始样本的标签相对应的攻击词集,并从中选择攻击得分最高的单词作为攻击词;根据预设的句子模板,选择所述攻击词的词性对应的句法规则,从所述词性词典中选择规则对应的单词,与所述攻击词共同构成符合所述句法规则的句子;根据预设的添加条件,将所述句子添加到所述原始样本中,得到新样本;根据预设的迭代条件对所述新样本进行多轮迭代计算,得到对抗样本。本发明能够避免拼写和语法错误,具有低修改率和高攻击性,提高了攻击效率。

    一种对抗样本防御方法、系统、计算机及介质

    公开(公告)号:CN113780363A

    公开(公告)日:2021-12-10

    申请号:CN202110946024.6

    申请日:2021-08-17

    Applicant: 广州大学

    Abstract: 本发明提供了一种对抗样本防御方法、系统、计算机及介质,所述方法包括获取待检测图像样本;分别采用不同的去噪方法对待检测图像样本进行去噪处理,得到对应的第一去噪样本和第二去噪样本;将待检测图像样本、第一去噪样本和第二去噪样本分别输入深度神经网络模型,得到对应的待检测样本概率向量、第一去噪样本概率向量和第二去噪样本概率向量;分别获取待检测图像样本概率向量与第一去噪样本概率向量的第一相似度、以及与第二去噪样本概率向量的第二相似度,并根据第一相似度和第二相似度,判断待检测图像样本是否为对抗样本。本发明能够简单、高效且精准的识别对抗样本及给出对应的预测类别,有效提升对抗样本的防御能力及模型的服务能力。

    文本对抗样本生成方法、系统、计算机设备和存储介质

    公开(公告)号:CN114091448A

    公开(公告)日:2022-02-25

    申请号:CN202111237436.9

    申请日:2021-10-22

    Applicant: 广州大学

    Abstract: 本发明公开了文本对抗样本生成方法、系统、计算机设备和存储介质。所述方法包括:对获取的数据集中的单词进行tf‑idf得分计算,得到所述数据集的词性词典和不同标签对应的攻击词集;从所述数据集中选择与原始样本的标签相对应的攻击词集,并从中选择攻击得分最高的单词作为攻击词;根据预设的句子模板,选择所述攻击词的词性对应的句法规则,从所述词性词典中选择规则对应的单词,与所述攻击词共同构成符合所述句法规则的句子;根据预设的添加条件,将所述句子添加到所述原始样本中,得到新样本;根据预设的迭代条件对所述新样本进行多轮迭代计算,得到对抗样本。本发明能够避免拼写和语法错误,具有低修改率和高攻击性,提高了攻击效率。

    一种对抗样本生成方法、系统、计算机设备和存储介质

    公开(公告)号:CN113449783A

    公开(公告)日:2021-09-28

    申请号:CN202110675839.5

    申请日:2021-06-17

    Applicant: 广州大学

    Abstract: 本发明提供了一种对抗样本生成方法、系统、计算机设备和存储介质,通过获取待攻击的原始图像样本和神经网络模型,根据原始图像样本输入神经网络模型得到对应的梯度符号矩阵,以及采用熵值滤波器获取原始图像样本的信息熵分布矩阵生成扰动矩阵,并使用该扰动矩阵对原始图像样本添加扰动,并在得到的噪声图像样本满足对抗样本生成要求时,停止迭代,将该噪声图像样本作为对抗样本,反之,将噪声图像样本输入神经网络模型,进行下一轮噪声图像样本生成迭代,直至得到满足要求的对抗样本的方法,克服现有技术中未对梯度信息的重要程度作区分,在图像信息熵不同的区域生成均匀分布扰动缺陷的同时,增加了对抗样本的隐蔽性,提升了对抗样本的攻击效果。

    一种融合双语言模型和句子检测的文本生成方法

    公开(公告)号:CN114298010B

    公开(公告)日:2024-11-08

    申请号:CN202111499830.X

    申请日:2021-12-09

    Applicant: 广州大学

    Abstract: 本发明公开了一种融合双语言模型和句子检测的文本生成方法,该方法步骤包括:语言模型M1和语言模型M2同步扩展关键词前后的单词;语言模型M1正向预测下一字符得到新文本S1,语言模型M2反向预测下一个字符得到新文本S2,拼接新文本S1和新文本S2得到句子;句子满足输出条件则输出句子,否则作为新的输入;基于规约的句法分析方法对句子进行结构分析,句子能规约至文法起始符则符合句法规则;使用N‑Gram统计模型对符合句法规则的候选句子计算语言得分,若候选句子的语言得分超过设定阈值则作为最终文本输出。本发明可应用于句子构造、文章生成等创造性的文本生成任务中,有效解决以往生成技术中句子丰富度低、可读性差的问题。

    一种对抗样本生成方法、系统、计算机设备和存储介质

    公开(公告)号:CN113780123A

    公开(公告)日:2021-12-10

    申请号:CN202111001380.7

    申请日:2021-08-27

    Applicant: 广州大学

    Abstract: 本发明公开了一种对抗样本生成方法、系统、计算机设备和存储介质,所述方法包括:对原始人脸图像进行人脸关键点检测,得到人脸的关键点,根据所述关键点构成的掩码区域,得到相对应的掩码矩阵;将原始人脸图像和经过初始化的干扰噪声输入神经网络进行训练,得到第一干扰噪声;将所述第一干扰噪声与所述掩码矩阵相乘,得到干扰区域限制的第二干扰噪声,对所述第二干扰噪声进行高斯滤波,得到第三干扰噪声;将所述第三干扰噪声与所述原始人脸图像相叠加,得到对抗样本;根据预设的迭代条件对所述对抗样本进行多轮迭代计算,得到最终的对抗样本。本发明能够更加精准地实现局部攻击的对抗样本生成效果,提高了人脸对抗样本的抗感知能力和抗检测能力。

    一种对抗样本防御方法、系统、计算机及介质

    公开(公告)号:CN113780363B

    公开(公告)日:2023-08-08

    申请号:CN202110946024.6

    申请日:2021-08-17

    Applicant: 广州大学

    Abstract: 本发明提供了一种对抗样本防御方法、系统、计算机及介质,所述方法包括获取待检测图像样本;分别采用不同的去噪方法对待检测图像样本进行去噪处理,得到对应的第一去噪样本和第二去噪样本;将待检测图像样本、第一去噪样本和第二去噪样本分别输入深度神经网络模型,得到对应的待检测样本概率向量、第一去噪样本概率向量和第二去噪样本概率向量;分别获取待检测图像样本概率向量与第一去噪样本概率向量的第一相似度、以及与第二去噪样本概率向量的第二相似度,并根据第一相似度和第二相似度,判断待检测图像样本是否为对抗样本。本发明能够简单、高效且精准的识别对抗样本及给出对应的预测类别,有效提升对抗样本的防御能力及模型的服务能力。

    一种对抗样本生成方法、系统、计算机设备和存储介质

    公开(公告)号:CN113449783B

    公开(公告)日:2022-11-08

    申请号:CN202110675839.5

    申请日:2021-06-17

    Applicant: 广州大学

    Abstract: 本发明提供了一种对抗样本生成方法、系统、计算机设备和存储介质,通过获取待攻击的原始图像样本和神经网络模型,根据原始图像样本输入神经网络模型得到对应的梯度符号矩阵,以及采用熵值滤波器获取原始图像样本的信息熵分布矩阵生成扰动矩阵,并使用该扰动矩阵对原始图像样本添加扰动,并在得到的噪声图像样本满足对抗样本生成要求时,停止迭代,将该噪声图像样本作为对抗样本,反之,将噪声图像样本输入神经网络模型,进行下一轮噪声图像样本生成迭代,直至得到满足要求的对抗样本的方法,克服现有技术中未对梯度信息的重要程度作区分,在图像信息熵不同的区域生成均匀分布扰动缺陷的同时,增加了对抗样本的隐蔽性,提升了对抗样本的攻击效果。

Patent Agency Ranking