-
公开(公告)号:CN118917315A
公开(公告)日:2024-11-08
申请号:CN202411127569.4
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/295 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06F40/30 , G06F40/253 , G06N3/048 , G06F16/35
Abstract: 本发明涉及基于Bert与深度学习模型的威胁情报实体检测方法,包括:首先,利用预训练的BERT模型捕捉文本的基本语义信息,并构建语法结构图;然后,将语法结构图被送入图注意力网络处理,分析实体间的复杂依赖关系;同时,将BERT模型输出的CLS向量与通过Text‑CNN处理得到的全局向量进行拼接,形成包含全局上下文信息和局部细节特征的HCV;此外,获得单词时序上下文信息以及实体单词之间的重要性关联;最后,将来自不同模块的向量进行融合,放入条件随机场层进行实体的识别,获得威胁实体的输出。本发明在处理网络安全领域专业术语和复杂语境时,表现出更优异的性能。
-
公开(公告)号:CN119938930A
公开(公告)日:2025-05-06
申请号:CN202510417210.9
申请日:2025-04-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/353 , G06F40/30 , G06F40/295 , G06N3/045 , G06N3/0455 , G06N3/0499 , G06N3/048
Abstract: 本发明提出了一种基于双指针架构的威胁情报三元组抽取方法及系统;以BERT模型作为编码器对威胁情报文本进行分析,即利用三个独立的权重矩阵分别生成头实体、尾实体和关系的上下文感知向量;基于双指针架构分别识别头实体和尾实体的上下文感知向量,并生成候选实体对;将候选实体对和关系的上下文感知向量进行拼接,以生成关系实体向量;利用评分模块对关系实体向量进行筛选;将筛选后的关系实体向量输入Softmax层进行关系分类,以生成威胁情报三元组的识别结果。本发明可以有效避免实体间的相互干扰,进而确保生成的威胁实体三元组更为精准,准确揭示攻击链中的不同环节及其之间的关系,为安全专家提供更全面、深入的威胁情报分析。
-
公开(公告)号:CN118917315B
公开(公告)日:2025-04-04
申请号:CN202411127569.4
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/295 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06F40/30 , G06F40/253 , G06N3/048 , G06F16/35
Abstract: 本发明涉及基于Bert与深度学习模型的威胁情报实体检测方法,包括:首先,利用预训练的BERT模型捕捉文本的基本语义信息,并构建语法结构图;然后,将语法结构图被送入图注意力网络处理,分析实体间的复杂依赖关系;同时,将BERT模型输出的CLS向量与通过Text‑CNN处理得到的全局向量进行拼接,形成包含全局上下文信息和局部细节特征的HCV;此外,获得单词时序上下文信息以及实体单词之间的重要性关联;最后,将来自不同模块的向量进行融合,放入条件随机场层进行实体的识别,获得威胁实体的输出。本发明在处理网络安全领域专业术语和复杂语境时,表现出更优异的性能。
-
-