-
公开(公告)号:CN116456307A
公开(公告)日:2023-07-18
申请号:CN202310522070.2
申请日:2023-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明公开一种基于Q学习的能量受限物联网数据采集和融合方法,属于利用计算机模型优化无人机群数据采集能耗的技术领域。本发明针对无人机群的碰撞避免、飞行角度变化和节点距离约束,将无人机能耗问题转化为马尔可夫决策过程,应用强化学习算法求解无人机路径决策问题:将无人机与节点之间的距离、无人机飞行角度的变化以及无人机之间的安全距离作为强化学习的奖励,使无人机群协同访问所有节点,并有效降低了能耗。此外,在无人机群任务完成后,动态选择距离基站最近的无人机作为中继无人机,中继无人机将其他无人机采集的数据统一传输到基站,从而降低了无人机群的总体飞行能耗。
-
公开(公告)号:CN114500043B
公开(公告)日:2022-08-26
申请号:CN202210086936.5
申请日:2022-01-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 江苏海洋大学
Abstract: 本发明公开了基于同源性分析的物联网固件漏洞检测方法,包括:建立函数漏洞库;提取待检测固件的可执行文件集合以及对应的指令架构,将在函数漏洞库中存在同名同架构的可执行文件作为待检测可执行文件;对待检测可执行文件进行反汇编,获取待检测可执行文件的函数集合,将在函数漏洞库中存在同名的函数作为待检测函数;对待检测函数的二进制文件进行反汇编,提取待检测函数的汇编代码,形成待检测函数指令集合,计算待检测函数指令集合与漏洞函数的指令集合的相似度。本发明还提供了基于同源性分析的物联网固件漏洞检测系统。本发明能够更加高效、精确地检测固件中存在的同源性漏洞。
-
公开(公告)号:CN114500043A
公开(公告)日:2022-05-13
申请号:CN202210086936.5
申请日:2022-01-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 江苏海洋大学
Abstract: 本发明公开了基于同源性分析的物联网固件漏洞检测方法,包括:建立函数漏洞库;提取待检测固件的可执行文件集合以及对应的指令架构,将在函数漏洞库中存在同名同架构的可执行文件作为待检测可执行文件;对待检测可执行文件进行反汇编,获取待检测可执行文件的函数集合,将在函数漏洞库中存在同名的函数作为待检测函数;对待检测函数的二进制文件进行反汇编,提取待检测函数的汇编代码,形成待检测函数指令集合,计算待检测函数指令集合与漏洞函数的指令集合的相似度。本发明还提供了基于同源性分析的物联网固件漏洞检测系统。本发明能够更加高效、精确地检测固件中存在的同源性漏洞。
-
公开(公告)号:CN117939563B
公开(公告)日:2024-09-03
申请号:CN202410145361.9
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。
-
公开(公告)号:CN117939563A
公开(公告)日:2024-04-26
申请号:CN202410145361.9
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。
-
公开(公告)号:CN116456307B
公开(公告)日:2024-04-09
申请号:CN202310522070.2
申请日:2023-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明公开一种基于Q学习的能量受限物联网数据采集和融合方法,属于利用计算机模型优化无人机群数据采集能耗的技术领域。本发明针对无人机群的碰撞避免、飞行角度变化和节点距离约束,将无人机能耗问题转化为马尔可夫决策过程,应用强化学习算法求解无人机路径决策问题:将无人机与节点之间的距离、无人机飞行角度的变化以及无人机之间的安全距离作为强化学习的奖励,使无人机群协同访问所有节点,并有效降低了能耗。此外,在无人机群任务完成后,动态选择距离基站最近的无人机作为中继无人机,中继无人机将其他无人机采集的数据统一传输到基站,从而降低了无人机群的总体飞行能耗。
-
公开(公告)号:CN120069009A
公开(公告)日:2025-05-30
申请号:CN202510542723.2
申请日:2025-04-28
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于分布式机器学习的技术领域,更具体地,涉及一种差分隐私下检测并防御投毒攻击的联邦学习方法及系统。所述方法包括:在客户端定义差分隐私;客户端下载服务端的全局模型,使用本地训练数据集训练本地模型,计算差分隐私噪声并结合自适应加噪决策机制实现本地模型更新;服务端接收来自客户端的本地模型更新,执行基于分段聚类分析的恶意更新检测;服务端为各客户端分配权重并聚合更新得到全局模型;重复以上步骤,直到达到设置的训练轮次,输出最终的全局模型。本发明解决了差分隐私下模型扰动造成的攻击识别困难问题,可精准筛除对全局模型构成威胁的异常客户端,实现隐私性与安全性的协同优化。
-
公开(公告)号:CN120068994A
公开(公告)日:2025-05-30
申请号:CN202510512002.7
申请日:2025-04-23
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/092 , G06N3/098 , G06N3/048 , G06N3/0464 , G06N3/0499
Abstract: 本发明属于联邦学习领域,具体涉及一种基于双层强化学习的联邦学习设备调度优化方法及装置,其方法包括:获取设备的当前状态特征;将设备分为个组,并通过上层强化学习为每组设备分配参与率;通过下层强化学习选择每组内参与联邦学习的设备;构建设备调度目标函数,并初始化全局模型参数,基于下层强化学习所选择的设备进行联邦学习训练,训练过程中,通过调整每组设备的参与率和优化目标的评分权重最大化设备调度目标函数,以确定设备最优调度策略。本发明利用双层强化学习策略优化联邦学习设备调度,旨在提升全局模型性能、降低设备能耗、并提高设备参与公平性。
-
公开(公告)号:CN120030536A
公开(公告)日:2025-05-23
申请号:CN202510496401.9
申请日:2025-04-21
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/55 , G06F18/23213 , G06N20/00 , G06N3/045 , G06N3/096
Abstract: 本发明属于信息安全的技术领域,尤其涉及一种联邦学习防御方法、电子设备及存储介质。本发明是一种适用于非独立同分布数据环境的抵御投毒攻击的防御方法,通过融合历史全局模型构造教师模型,在客户端进行知识蒸馏和个性化训练、联合服务器端使用K‑means聚合方法共同防御模型投毒攻击。通过模拟训练过程中的攻击与防御机制,该方法系统能够识别并剔除恶意客户端,不仅提高了联邦学习框架对模型投毒攻击的防御能力,还显著提升了最终全局模型的性能,保证了联邦学习系统的整体鲁棒性和安全性。
-
公开(公告)号:CN118897973A
公开(公告)日:2024-11-05
申请号:CN202410967431.9
申请日:2024-07-18
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 青岛理工大学
IPC: G06F18/21 , G06F18/15 , G06F18/213 , G06F18/214 , G06F18/23 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/049 , G06N3/084 , G06N3/088
Abstract: 本发明涉及一种基于VAE‑Bi‑LSTM‑SAM的电网电压数据异常检测方法、装置、设备及存储介质。该方法包括:采集电网电压时序数据构建数据集,对数据集中的数据进行预处理,将预处理后的数据集划分为训练集和测试集;对训练集和测试集中的电网电压时序数据进行标准化处理,按时间步长对标准化处理后的电网电压时序数据进行窗口滑动切片处理,形成多元时序窗口数据Xt;建立基于VAE‑Bi‑LSTM‑SAM的异常数据检测模型;利用训练集对基于VAE‑Bi‑LSTM‑SAM的异常数据检测模型进行训练,得到训练好的异常数据检测模型;利用训练好的异常数据检测模型对测试集中的电网电压时序数据进行异常检测。本发明能够实现对电网电压异常数据的准确检测,提高模型的泛化能力,增强模型对异常数据的识别能力。
-
-
-
-
-
-
-
-
-