-
公开(公告)号:CN118247204A
公开(公告)日:2024-06-25
申请号:CN202311524364.5
申请日:2023-11-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院
Abstract: 一种基于提示学习的多器官细胞核分割方法,涉及医学图像处理技术领域,利用文本与图像多模态信息充分挖掘图像信息,学习到语义信息与分割目标之间的关联,对目标区域的分割进行综合学习。基于clip模型从6个公开细胞核数据集中训练学习大量的文本和图像配对知识,来获得细胞核的语义理解先验知识,使得模型完全适合细胞核分割任务。构建模型通过输入图像与文本提示,利用文本和图像多模态信息,完成6个不同器官细胞核识别并且准确分割任务,计算效率更高,该模型还可以在缺乏标注的部分数据集上使用充分文本提示完成准确的分割任务,更具备实用性与可拓展性。
-
公开(公告)号:CN117474741B
公开(公告)日:2024-05-07
申请号:CN202311561214.1
申请日:2023-11-22
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: G06T1/00 , G06V40/16 , G06V20/00 , G06V10/44 , G06V10/77 , G06N3/0455 , G06N3/0464
Abstract: 一种基于人脸关键点水印的主动防御检测方法,涉及图像伪造检测领域,对于一张原始图像提取人脸关键点,将提取出来的人脸关键点转换成二进制的水印。随后二进制水印被嵌入到原始图像中得到水印图像,继而水印图像会经过非恶意/恶意操作得到操作图像或篡改图像,使得模型能够对这些非恶意/恶意操作具有鲁棒性,该方法引入了人脸关键点,既为每个人生成独有的水印也实现了溯源以及检测功能。
-
公开(公告)号:CN117474741A
公开(公告)日:2024-01-30
申请号:CN202311561214.1
申请日:2023-11-22
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: G06T1/00 , G06V40/16 , G06V20/00 , G06V10/44 , G06V10/77 , G06N3/0455 , G06N3/0464
Abstract: 一种基于人脸关键点水印的主动防御检测方法,涉及图像伪造检测领域,对于一张原始图像提取人脸关键点,将提取出来的人脸关键点转换成二进制的水印。随后二进制水印被嵌入到原始图像中得到水印图像,继而水印图像会经过非恶意/恶意操作得到操作图像或篡改图像,使得模型能够对这些非恶意/恶意操作具有鲁棒性,该方法引入了人脸关键点,既为每个人生成独有的水印也实现了溯源以及检测功能。
-
公开(公告)号:CN117291941A
公开(公告)日:2023-12-26
申请号:CN202311329962.7
申请日:2023-10-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于边界和中心点特征辅助的细胞核分割方法,涉及医学图像处理领域,通过编码器和解码器网络实现训练,使得训练后的网络能够从病理图像中找到细胞核的边界、中心点、细胞核这些外观特征,实现了由点到线再到面的特征约束,通过设计特定的中心点损失函数与边界加权模块bwm,保证了输入图片信息的完整性,提高了对细胞核分割的准确性。同时借助计算机视觉和图像处理技术,可以实现自动化的细胞核分割,大大提高了分割的准确性和效率。既可以节省人力资源,也加快研究和诊断的进程。
-
公开(公告)号:CN113342904B
公开(公告)日:2021-12-24
申请号:CN202110354107.6
申请日:2021-04-01
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东科技大学
IPC: G06F16/28 , G06F16/2458 , G06Q50/10
Abstract: 一种基于企业特征传播的企业服务推荐方法,利用企业特征间关联的知识图谱,利用目标服务对交互记录中的企业进行特征传播,自动挖掘企业关联路径,刻画出企业之间关联特征,与企业特征结合,利用新的损失函数结合深度学习得到企业与服务的交互概率,能够解决通用框架仅使用交互数据以及基本信息而偏离企业间关系而导致的推荐效果不好等问题,实现对企业的服务方案精准推荐。通过对企业间关系自动挖掘,发现企业间关联路径,及企业特征进行交互预测评分,通过目标服务对交互记录中企业的特征传播以及交互框架,来解决企业对服务方案选择困难的问题。
-
公开(公告)号:CN109602416A
公开(公告)日:2019-04-12
申请号:CN201910018584.8
申请日:2019-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东大学齐鲁医院
IPC: A61B5/0402
Abstract: 一种ECG信号联合基线校正及降噪的方法,使得经过基线校正和降噪后恢复的信号,能够保持原始信号的平滑,并且恢复的信号基本保留了原始信号的细节信息特征。有效地进行了基线校正和噪声抑制,明显改善了传统滤波算法中存在的ECG峰值欠估计的问题,保证了恢复ECG信号的真实性。
-
公开(公告)号:CN117958831A
公开(公告)日:2024-05-03
申请号:CN202311479336.6
申请日:2023-11-08
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/318 , A61B5/346 , A61B5/00 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/213 , G06N3/0442 , G06N3/0455 , G06N3/0895
Abstract: 一种基于自监督学习的多导联心电分类方法,涉及心电信号分类技术领域,首先采用多种不同数据增强的方式对原始信号进行处理,设计合适的编码器模块和利用大量易获得的无标签数据提取心电特征,使编码器学习到更多关于心电信号类别的信息。最后利用少量标注数据微调模型编码器进行特征优化,通过训练模型,不断优化特征提取器的参数,使得生成的特征能够更好地反映输入数据的结构和信息。自监督学习的方式在一定程度上减少心电分类需要大量昂贵人工标注数据造成的阻碍,提高了模型的泛化能力。
-
公开(公告)号:CN115357805B
公开(公告)日:2023-06-16
申请号:CN202210920144.3
申请日:2022-08-02
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9536 , G06N3/0464 , G06N3/042 , G06N3/08
Abstract: 一种基于内外部视角的群组推荐方法,基于外部视角,将群组与餐厅和用户与餐厅的交互看作两个独立的过程,利用图卷积分别学习这两种交互行为中隐含的偏好信息,使模型学习到用户作为个体时的个人偏好以及群组作为整体时的固定偏好。基于内部视角,将群组决策过程中成员之间存在的互动商讨过程考虑在内,采用图注意力神经网络学习此过程中产生的成员间的相互影响,使模型能够准确捕捉受影响后的成员偏好变化。基于内部视角,不同成员在群组中的作用与影响力不同,导致在群组决策中的贡献度不同,采用注意力机制学习成员贡献度大小,能够以一种动态的方式学习聚合策略,更好的权衡不同成员的偏好,解决偏好冲突问题。
-
公开(公告)号:CN110755069A
公开(公告)日:2020-02-07
申请号:CN201911027439.2
申请日:2019-10-25
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/0452
Abstract: 一种跳跃突变噪声的动态心电信号基线漂移校正方法,通过准确检测心电信号中包含的跳跃突变区域,并分段单独处理,可以改善传统滤波方法处理该类区域时基线提取不准确导致的心电信号变形问题。适用于各种含有基线漂移的心电信号的基线漂移校正处理,尤其是可穿戴式的动态心电信号。得到的基线漂移校正信号的波形明显优于其他方法。
-
公开(公告)号:CN117958831B
公开(公告)日:2024-10-29
申请号:CN202311479336.6
申请日:2023-11-08
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/318 , A61B5/346 , A61B5/00 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/213 , G06N3/0442 , G06N3/0455 , G06N3/0895
Abstract: 一种基于自监督学习的多导联心电分类方法,涉及心电信号分类技术领域,首先采用多种不同数据增强的方式对原始信号进行处理,设计合适的编码器模块和利用大量易获得的无标签数据提取心电特征,使编码器学习到更多关于心电信号类别的信息。最后利用少量标注数据微调模型编码器进行特征优化,通过训练模型,不断优化特征提取器的参数,使得生成的特征能够更好地反映输入数据的结构和信息。自监督学习的方式在一定程度上减少心电分类需要大量昂贵人工标注数据造成的阻碍,提高了模型的泛化能力。
-
-
-
-
-
-
-
-
-