-
公开(公告)号:CN114556380A
公开(公告)日:2022-05-27
申请号:CN201980101036.X
申请日:2019-10-17
Applicant: 富士通株式会社
IPC: G06N20/00
Abstract: 本发明涉及机器学习程序、机器学习方法以及机器学习装置。进行训练数据的离散化,以便模型精度提高。关于将标签信息与多个数据项目的数据项目值的组合建立关联的多个学习数据,对每个数据项目将数据项目值转换为基于规定的基准离散化后的离散化数据值。使用转换后的多个学习数据执行学习将离散化数据值作为输入进行关于标签信息的判定的模型的学习处理。从学习处理的执行结果获取示出多个数据项目中的用于判定的两个以上的数据项目的组合的不同的多个特征信息、和示出多个特征信息各自的重要性的指标值。基于指标值选择一个以上的特征信息,基于选择出的一个以上的特征信息来变更用于数据项目值的离散化的基准。