基于空谱融合与模型学习耦合的叶绿素a浓度反演方法

    公开(公告)号:CN114330530A

    公开(公告)日:2022-04-12

    申请号:CN202111597460.3

    申请日:2021-12-24

    Applicant: 安徽大学

    Abstract: 本发明涉及水质参数遥感反演领域,公开了基于空谱融合与模型学习耦合的叶绿素a浓度反演方法,通过获取相同日期MODIS和Sentinel‑2数据,经过预处理,得到样本数据集;构建面向叶绿素a浓度反演的MODIS和Sentinel‑2空‑谱融合深度学习网络,并耦合光谱响应函数、影像退化模型等物理约束,从而获得具有MODIS光谱分辨率和Sentinel‑2空间分辨率的融合数据,为叶绿素a浓度反演提供高空谱分辨率数据源;结合实地采样数据与融合的高空谱分辨率数据,在梯度提升树等机器学习的水质反演算法下验证融合的有效性,结果表明本处理方法有效提高了叶绿素a浓度的反演精度。

    一种遥感影像中矿区自动语义分割方法

    公开(公告)号:CN109145730B

    公开(公告)日:2021-08-13

    申请号:CN201810770020.5

    申请日:2018-07-13

    Applicant: 安徽大学

    Abstract: 本发明公开了目标自动检测和深度学习技术领域的一种遥感影像中矿区自动语义分割方法,其特征在于:所述具体步骤如下:步骤一、建立训练样本集:获取矿区的遥感影像,并人工勾绘出矿区的边界,形成边界栅格文件,利用ArcGIS生成448*448、512*512两种尺度的渔网,采用生成的两种所述渔网对所述矿区的遥感影像进行批量裁剪,生成不同尺寸的影像块,作为深度学习网络的输入数据,通过所述渔网对影像中的矿区栅格边界文件进行裁剪,生成每个矿区影像块对应的边界文件,作为网络的标签数据;本发明通过混合网络Den‑Res Net在保留特征完整性的同时能够对提取的特征进行高度抽象,可以采用其解决Dense Net网络的特征冗余问题,工作效率高,能够自动的进行语义分隔,准确度高。

    基于多特征整合深度学习模型的倾斜摄影点云分类方法

    公开(公告)号:CN110110621A

    公开(公告)日:2019-08-09

    申请号:CN201910329481.3

    申请日:2019-04-23

    Applicant: 安徽大学

    Inventor: 吴艳兰 杨辉 王彪

    Abstract: 本发明公开了摄影测量数据处理技术领域的基于多特征整合深度学习模型的倾斜摄影点云分类方法,首先,通过研究顾及视觉注意力机制的点云分类优化,实现点云立体视觉注意特征分析方法,以及基于深度学习的立体目标视觉注意力评估方法,并进行识别目标注意力强弱评估与排序;其次,利用立体视觉注意力机制,对待识别的倾斜摄影点云进行点云过滤,开展点云初级特征描述及自学习子模型研究;最后,经过点云场景相对于待识别目标的视觉注意力机制过滤后的点云作为待识别点云;本发明在应用上,取得具有实用价值的倾斜摄影实景点云分类技术,以期切实地推进倾斜摄影应用由“可视化”向“可计算”方向发展。

    一种基于互信息约束的多任务学习建筑物提取方法及系统

    公开(公告)号:CN119540554A

    公开(公告)日:2025-02-28

    申请号:CN202411591280.8

    申请日:2024-11-08

    Abstract: 本发明属于城市遥感监测技术领域,具体涉及一种基于互信息约束的多任务学习建筑物提取方法及系统。本发明针对现有建筑物提取方法往往会导致划分不完整和模糊,从而阻碍建筑物足迹提取的自动化的问题,设计了用于从遥感图像中精确提取建筑足迹的互信息约束多任务学习网络,互信息约束多任务学习网络引入了一种并行的上下文感知结构,以捕捉全局和细节建筑特征。此外,它还集成了傅立叶互信息平衡模块,以促进多尺度上下文信息的交互和融合。利用多任务学习策略,互信息约束多任务学习网络可同时提取建筑掩膜和轮廓,并采用互信息损失函数来加强这两项任务之间的信息交换。这种方法不仅能约束建筑形状,还能提高模型细化建筑边界的能力。

Patent Agency Ranking