-
公开(公告)号:CN112070760B
公开(公告)日:2022-11-08
申请号:CN202010977948.8
申请日:2020-09-17
IPC: G06T7/00 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于卷积神经网络的骨量检测方法,其步骤包括:1构建卷积神经网络;2获取根据骨密度仪标注的X光片数据集并进行预处理;3利用X光片数据集对神经网络进行训练,得到能够对骨量异常、骨量减少和骨量正常的X光片进行识别的网络模型;4利用网络模型对X光片进行检测,评估模型的分类精度;5基于训练的网络模型进行集成,并转化为可执行程序exe,输入dicom格式待检测数据,得到对应检测结果。本发明能实现端到端的骨量异常、骨量减少和骨量正常的X光片的检测,从而方便快捷的及时发现骨量减少或骨量异常状态,辅助进一步检查和治疗,以降低因为骨量异常而发生的一系列风险。
-
公开(公告)号:CN112070760A
公开(公告)日:2020-12-11
申请号:CN202010977948.8
申请日:2020-09-17
Abstract: 本发明公开了一种基于卷积神经网络的骨量检测方法,其步骤包括:1构建卷积神经网络;2获取根据骨密度仪标注的X光片数据集并进行预处理;3利用X光片数据集对神经网络进行训练,得到能够对骨量异常、骨量减少和骨量正常的X光片进行识别的网络模型;4利用网络模型对X光片进行检测,评估模型的分类精度;5基于训练的网络模型进行集成,并转化为可执行程序exe,输入dicom格式待检测数据,得到对应检测结果。本发明能实现端到端的骨量异常、骨量减少和骨量正常的X光片的检测,从而方便快捷的及时发现骨量减少或骨量异常状态,辅助进一步检查和治疗,以降低因为骨量异常而发生的一系列风险。
-