一种基于异质图对比学习的云ERP下知识补全方法及系统

    公开(公告)号:CN114493516B

    公开(公告)日:2022-12-23

    申请号:CN202210055191.6

    申请日:2022-01-18

    Applicant: 安徽大学

    Abstract: 本发明提供一种基于异质图对比学习的云ERP下知识补全方法及系统包括:获取原ERP下用户、需求、服务、厂商的特征以及用户‑需求交互数据、需求‑服务交互数据、服务厂商交互数据,建立邻接矩阵,初始化各实体表示向量;根据邻接矩阵构建异质图,并预定义元结构;计算异质图中元结构下用户、需求、服务和厂商的交换矩阵;设计对比损失函数,使同一实体在元结构下的表示向量相似性极小,更新实体对应的图编码器参数矩阵,计算异质图中实体的表示向量;计算用户与需求、需求与服务两两之间的相似性,根据相似性排名补全“用户‑需求‑服务”关系。本发明解决了现有技术中存在的服务数据的稀疏特性导致云ERP领域知识库缺失大量三元组的技术问题。

    一种基于异质图对比学习的云ERP下知识补全方法及系统

    公开(公告)号:CN114493516A

    公开(公告)日:2022-05-13

    申请号:CN202210055191.6

    申请日:2022-01-18

    Applicant: 安徽大学

    Abstract: 本发明提供一种基于异质图对比学习的云ERP下知识补全方法及系统包括:获取原ERP下用户、需求、服务、厂商的特征以及用户‑需求交互数据、需求‑服务交互数据、服务厂商交互数据,建立邻接矩阵,初始化各实体表示向量;根据邻接矩阵构建异质图,并预定义元结构;计算异质图中元结构下用户、需求、服务和厂商的交换矩阵;设计对比损失函数,使同一实体在元结构下的表示向量相似性极小,更新实体对应的图编码器参数矩阵,计算异质图中实体的表示向量;计算用户与需求、需求与服务两两之间的相似性,根据相似性排名补全“用户‑需求‑服务”关系。本发明解决了现有技术中存在的服务数据的稀疏特性导致云ERP领域知识库缺失大量三元组的技术问题。

Patent Agency Ranking