-
公开(公告)号:CN111160711B
公开(公告)日:2022-09-16
申请号:CN201911241150.0
申请日:2019-12-06
Applicant: 安徽大学
Abstract: 本发明提供了一种基于蚁群算法的平行机批调度方法,包括步骤A:初始化Tmax、AntNum、工件集合J={J1,J2,···,Jn}、机器集合M={M1,M2,···,Mm};当前迭代周期t=1,蚂蚁序号Ant=1,期望步骤B:当前蚂蚁Ant基于机器的完工时间将所有工件分配到机器中,得到一个调度方案;步骤C:通过局部优化调整步骤B得到的调度方案;步骤D:如果Ant<AntNum,令Ant=Ant+1,返回步骤B;步骤E:确定局部最优解和全局最优解,利用全局最优解更新期望步骤F:如果t<Tmax,则t=t+1,返回步骤B,否则输出全局最优解。本发明提供的基于蚁群算法的平行机批调度方法的优点在于:通过为蚁群算法配置全局期望值更新和局部期望值更新的步骤,有效的解决了对以最小化总加权完工时间为目标的权重、加工时间和尺寸均不同的工件序列的平行机批调度问题。
-
公开(公告)号:CN111160711A
公开(公告)日:2020-05-15
申请号:CN201911241150.0
申请日:2019-12-06
Applicant: 安徽大学
Abstract: 本发明提供了一种基于蚁群算法的平行机批调度方法,包括步骤A:初始化Tmax、AntNum、工件集合J={J1,J2,…,Jn}、机器集合M={M1,M2,…,Mm};当前迭代周期t=1,蚂蚁序号Ant=1,期望 步骤B:当前蚂蚁Ant基于机器的完工时间将所有工件分配到机器中,得到一个调度方案;步骤C:通过局部优化调整步骤B得到的调度方案;步骤D:如果Ant<AntNum,令Ant=Ant+1,返回步骤B;步骤E:确定局部最优解和全局最优解,利用全局最优解更新期望步骤F:如果t<Tmax,则t=t+1,返回步骤B,否则输出全局最优解。本发明提供的基于蚁群算法的平行机批调度方法的优点在于:通过为蚁群算法配置全局期望值更新和局部期望值更新的步骤,有效的解决了对以最小化总加权完工时间为目标的权重、加工时间和尺寸均不同的工件序列的平行机批调度问题。
-