-
公开(公告)号:CN114373109B
公开(公告)日:2024-03-05
申请号:CN202210045761.3
申请日:2022-01-16
Applicant: 安徽大学
IPC: G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的自然图像抠图方法及抠图装置。所述方法包括:设计四通道的图像输入;采用预先训练好的预训练模型提取图像输入的特征图;在第一阶段内:设定基于深度学习的网络模型一,针对特征图得到粗略透明度遮罩;在第二阶段内:将特征图随机取多个区域,并将这些区域中对应的粗略透明度遮罩作为第五通道添加到图像输入中;在当前的图像输入下,一方面采用基于深度学习的网络模型二,得到精细透明度遮罩,另一方面求解精细透明度遮罩的困难难度;对一个图像测试集中的所有待抠图的自然图像进行测试。本发明在技术上解决了未知区域较大图片难以抠图以及网络参数过多无法在内存较小的设备上抠图的问题,并在公开自然图像抠图数据集上取得了较好的结果。
-
公开(公告)号:CN114373109A
公开(公告)日:2022-04-19
申请号:CN202210045761.3
申请日:2022-01-16
Applicant: 安徽大学
IPC: G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的自然图像抠图方法及抠图装置。所述方法包括:设计四通道的图像输入;采用预先训练好的预训练模型提取图像输入的特征图;在第一阶段内:设定基于深度学习的网络模型一,针对特征图得到粗略透明度遮罩;在第二阶段内:将特征图随机取多个区域,并将这些区域中对应的粗略透明度遮罩作为第五通道添加到图像输入中;在当前的图像输入下,一方面采用基于深度学习的网络模型二,得到精细透明度遮罩,另一方面求解精细透明度遮罩的困难难度;对一个图像测试集中的所有待抠图的自然图像进行测试。本发明在技术上解决了未知区域较大图片难以抠图以及网络参数过多无法在内存较小的设备上抠图的问题,并在公开自然图像抠图数据集上取得了较好的结果。
-